
Firewall Builder 5 User's Guide

Firewall Builder 5 User's Guide
Id
Copyright © 2003-2011 NetCitadel, LLC

The information in this manual is subject to change without notice and should not be construed as a commitment by NetCitadel LLC. NetCitadel
LLC assumes no responsibility or liability for any errors or inaccuracies that may appear in this manual.

iii

1. Introduction ... 1
1.1. Introducing Firewall Builder ... 1
1.2. Overview of Firewall Builder Features ... 1

2. Installing Firewall Builder .. 4
2.1. RPM-Based Distributions (Red Hat, Fedora, OpenSUSE, and Others) 4
2.2. Ubuntu Installation ... 4
2.3. Installing FreeBSD and OpenBSD Ports ... 5
2.4. Windows Installation .. 5
2.5. Mac OS X Installation .. 5
2.6. Compiling from Source ... 5

3. Definitions and Terms ... 7
4. Firewall Builder GUI ... 8

4.1. The Main Window ... 8
4.2. GUI Menu and Tool Bars .. 11

4.2.1. File Menu ... 11
4.2.2. Edit Menu ... 12
4.2.3. View Menu ... 12
4.2.4. Object Menu ... 12
4.2.5. Rules Menu ... 13
4.2.6. Tools Menu ... 13
4.2.7. Window Menu ... 14
4.2.8. Help Menu .. 14
4.2.9. Object Context Menu .. 14
4.2.10. Tool Bar ... 15

4.3. Object Tree ... 16
4.3.1. Using Subfolders to Organize Object Tree .. 19
4.3.2. Filtering the Object Tree .. 21
4.3.3. Object Attributes in the Tree .. 23
4.3.4. Creating Objects .. 23

4.4. Undo and Redo .. 24
4.4.1. Undo Stack ... 25

4.5. Preferences Dialog .. 27
4.6. Working with Multiple Data Files .. 33

5. Working with Objects .. 38
5.1. Types of Objects .. 38
5.2. Addressable Objects .. 38

5.2.1. Common Properties of Addressable Objects .. 38
5.2.2. The Firewall Object .. 38
5.2.3. The Cluster Object ... 51
5.2.4. Editing Rule Set Objects .. 56
5.2.5. Interface Object ... 58
5.2.6. IPv4 Address Object ... 67
5.2.7. IPv6 Address Object ... 69
5.2.8. Attached Network Objects ... 71
5.2.9. Physical Address Objects ... 73
5.2.10. Host Object ... 76
5.2.11. IPv4 Network Object ... 82
5.2.12. IPv6 Network Object ... 83
5.2.13. Address Range Object ... 84
5.2.14. Address Tables Object ... 86
5.2.15. Special-Case addresses .. 95
5.2.16. DNS Name Objects ... 97
5.2.17. Object Groups .. 99
5.2.18. Dynamic Object Groups ... 100

Firewall Builder 5 User's Guide

iv

5.3. Service Objects ... 102
5.3.1. IP Service ... 102
5.3.2. ICMP and ICMP6 Service Objects ... 107
5.3.3. TCP Service .. 109
5.3.4. UDP Service .. 116
5.3.5. User Service .. 118
5.3.6. Custom Service .. 120

5.4. Time Interval Objects .. 123
5.5. Object Keywords .. 125
5.6. Creating and Using a User-Defined Library of Objects ... 128
5.7. Finding and Replacing Objects .. 131

6. Network Discovery: A Quick Way to Create Objects ... 135
6.1. Reading the /etc/hosts file ... 136
6.2. Network Discovery .. 141
6.3. Importing Existing Firewall Configurations into Firewall Builder 157

6.3.1. Importing Existing Firewall Configurations ... 158
6.3.2. iptables Import Example .. 161
6.3.3. Information Regarding PF Import .. 168

7. Firewall Policies .. 169
7.1. Policies and Rules ... 169
7.2. Firewall Access Policy Rule Sets ... 169

7.2.1. Source and Destination .. 170
7.2.2. Service ... 171
7.2.3. Interface .. 171
7.2.4. Direction ... 171
7.2.5. Action .. 172
7.2.6. Time .. 174
7.2.7. Options and Logging ... 174
7.2.8. Working with Multiple Policy Rule Sets ... 177

7.3. Network Address Translation Rules .. 179
7.3.1. Basic NAT Rules ... 179
7.3.2. Source Address Translation .. 181
7.3.3. Destination Address Translation .. 187

7.4. Routing Ruleset .. 195
7.4.1. Handling of the Default Route .. 196
7.4.2. ECMP routes ... 196

7.5. Editing Firewall Rule Sets .. 197
7.5.1. Adding and Removing Rules .. 197
7.5.2. Adding, Removing, and Modifying Objects in Policies and NAT Rules 198
7.5.3. Changing the Rule Action .. 200
7.5.4. Changing Rule Direction .. 200
7.5.5. Setting Rule Options and Logging ... 200
7.5.6. Configuring Multiple Operations per Rule ... 201
7.5.7. Using Rule Groups ... 204
7.5.8. Support for Rule Elements and Features on Various Firewalls 207

7.6. Compiling and Installing Your Policy ... 207
7.7. Using Built-in Revision Control in Firewall Builder ... 208

8. Cluster configuration .. 216
8.1. Linux cluster configuration with Firewall Builder .. 216
8.2. OpenBSD cluster configuration with Firewall Builder .. 220
8.3. PIX cluster configuration with Firewall Builder .. 220
8.4. Handling of the cluster rule set and member firewalls rule sets 223

9. Configuration of interfaces .. 224
9.1. General principles ... 224

Firewall Builder 5 User's Guide

v

9.2. IP Address Management ... 225
9.2.1. IP Address Management on Linux ... 225
9.2.2. IP Address Management on BSD ... 228

9.3. Interface Names .. 231
9.4. Advanced Interface Settings .. 233

9.4.1. Setting Interface MTU ... 233
9.5. VLAN Interfaces ... 233

9.5.1. VLAN Interface Management on Linux .. 234
9.5.2. VLAN Interface Management on BSD ... 241

9.6. Bridge ports ... 246
9.6.1. Enabling Bridge Interface Management ... 247
9.6.2. Bridge Interface Management on Linux .. 248
9.6.3. Bridge Interface Management on BSD .. 253

9.7. Bonding Interfaces .. 256
10. Compiling and Installing a Policy ... 261

10.1. Different ways to compile ... 261
10.2. Compiling single rule in the GUI ... 262
10.3. Compiling firewall policies ... 263
10.4. Compiling cluster configuration with Firewall Builder .. 267

10.4.1. Compile a Cluster, Install a Firewall ... 267
10.4.2. Mixed Object Files .. 267
10.4.3. Compile a single firewall within a cluster .. 268

10.5. Installing a Policy onto a Firewall .. 269
10.5.1. Installation Overview ... 270
10.5.2. How does installer decide what address to use to connect to the firewall 273
10.5.3. Configuring Installer on Windows .. 274
10.5.4. Using putty sessions on Windows .. 276
10.5.5. Configuring installer to use regular user account to manage the firewall: 276
10.5.6. Configuring installer if you use root account to manage the firewall: 277
10.5.7. Configuring installer if you regularly switch between Unix and Windows
workstations using the same .fwb file and want to m anage the firewall from both 278
10.5.8. Always permit SSH access from the management workstation to the firewall 278
10.5.9. How to configure the installer to use an alternate ssh port number 279
10.5.10. How to configure the installer to use ssh private keys from a special file 280
10.5.11. Troubleshooting ssh access to the firewall .. 280
10.5.12. Running built-in installer to copy generated firewall policy to the firewall ma-
chine and activate it there ... 282
10.5.13. Running built-in installer to copy generated firewall policy to Cisco router or
ASA (PIX) ... 286
10.5.14. Batch install ... 288

10.6. Installing generated configuration onto Cisco routers .. 291
10.6.1. Installing configuration with scp .. 291

10.7. Installing generated configuration onto Cisco ASA (PIX) firewalls 292
11. Manage your firewall remotely ... 294

11.1. Dedicated Firewall machine .. 294
11.2. Using Diskless Firewall Configuration .. 295
11.3. The Management Workstation ... 295

12. Integration with OS Running on the Firewall Machine .. 296
12.1. Generic Linux OS ... 296
12.2. OpenWRT .. 296
12.3. DD-WRT ... 297

12.3.1. DD-WRT (nvram) ... 297
12.3.2. DD-WRT (jffs) ... 298

12.4. Sveasoft ... 298

Firewall Builder 5 User's Guide

vi

12.5. IPCOP ... 298
12.6. OpenBSD and FreeBSD ... 299

12.6.1. PF .. 299
12.6.2. ipfilter ... 301
12.6.3. ipfw .. 301

12.7. How to make your firewall load your firewall policy on reboot 301
12.7.1. Making the Firewall Load the Firewall Policy After Reboot: iptables 301
12.7.2. Making the Firewall Load the Firewall Policy After Reboot: pf 303
12.7.3. Making the Firewall Load the Firewall Policy After Reboot: ipfw 304
12.7.4. Making the Firewall Load the Firewall Policy After Reboot: ipfilter 304

13. Configlets ... 306
13.1. Configlet Example ... 306

14. Firewall Builder Cookbook .. 309
14.1. Changing IP addresses in Firewall Configuration Created from a Template 309
14.2. Examples of Access Policy Rules ... 313

14.2.1. Firewall Object used in Eexamples ... 313
14.2.2. Permit Internal LAN to Connect to the Internet ... 313
14.2.3. Allowing Specific Protocols Through, while Blocking Everything Else 316
14.2.4. Letting Certain Protocols through from a Specific Source. 318
14.2.5. Interchangeable and non-interchangeable objects ... 319
14.2.6. Anti-spoofing rules .. 320
14.2.7. Anti-Spoofing Rules for a Firewall with a Dynamic Address 321
14.2.8. Using Groups ... 322
14.2.9. Using an Address Range Instead of a Group .. 324
14.2.10. Controlling Access to the Firewall .. 325
14.2.11. Controlling access to different ports on the server 329
14.2.12. Firewall talking to itself .. 331
14.2.13. Blocking unwanted types of packets ... 332
14.2.14. Using Action 'Reject': blocking Ident protocol ... 333
14.2.15. Using Negation in Policy Rules ... 335
14.2.16. Tagging Packets .. 336
14.2.17. Adding IPv6 Rules to a Policy ... 338
14.2.18. Using Mixed IPv4+IPv6 Rule Sets to Simplify Adoption of IPv6 347
14.2.19. Running Multiple Services on the Same Machine on Different Virtual Ad-
dresses and Different Ports ... 350
14.2.20. Using a Firewall as the DHCP and DNS Server for the Local Net 351
14.2.21. Controlling Outgoing Connections from the Firewall 352
14.2.22. Branching rules ... 353
14.2.23. Using branch rule set with external script that adds rules "on the fly" to pre-
vent ssh scanning attacks .. 357
14.2.24. A Different Method for Preventing SSH Scanning Attacks: Using a Custom
Service Object with the iptables Module "recent" .. 360
14.2.25. Using an Address Table Object to Block Access from Large Lists of IP Ad-
dresses .. 363

14.3. Examples of NAT Rules ... 366
14.3.1. "1-1" NAT ... 366
14.3.2. "No NAT" Rules .. 367
14.3.3. Redirection rules ... 368
14.3.4. Destination NAT Onto the Same Network ... 368
14.3.5. "Double" NAT (Source and Destination Translation) 370

14.4. Examples of cluster configurations ... 372
14.4.1. Web server cluster running Linux or OpenBSD .. 372
14.4.2. Linux Cluster Using VRRPd ... 398
14.4.3. Linux Cluster Using a Heartbeat .. 412

Firewall Builder 5 User's Guide

vii

14.4.4. Linux cluster with OpenVPN tunnel interfaces .. 429
14.4.5. Linux Cluster Using Heartbeat and VLAN Interfaces 431
14.4.6. Linux cluster using heartbeat running over dedicated interface 442
14.4.7. State synchronization with conntrackd in Linux cluster 442
14.4.8. OpenBSD cluster .. 442
14.4.9. PIX cluster .. 442

14.5. Examples of Traffic Shaping ... 443
14.5.1. Basic Rate Limiting ... 443

14.6. Useful Tricks .. 445
14.6.1. Using clusters to manage firewall policies on multiple servers 445
14.6.2. Creating Local Firewall Rules for a Cluster Member 455
14.6.3. Another Way to Generate a Firewall Policy for Many Hosts 462
14.6.4. Using Empty Groups ... 463
14.6.5. How to use Firewall Builder to configure the firewall using PPPoE 463

15. Troubleshooting ... 465
15.1. Build Issues .. 465

15.1.1. autogen.sh Complains "libfwbuilder not installed" 465
15.1.2. "Failed dependencies: ..." when installing RPM ... 465

15.2. Program Startup Issues ... 465
15.2.1. "fwbuilder: cannot connect to X server localhost:0.0" 465
15.2.2. "fwbuilder: error while loading shared libraries: libfwbuilder.so.0: cannot load
shared object file: no such file or directory." .. 466
15.2.3. "fwbuilder: error while loading shared libraries: /usr/local/lib/
libfwbuilder.so.8: cannot restore segment prot after re loc: Permission denied" 466

15.3. Firewall Compiler and Other Runtime Issues .. 466
15.3.1. Firewall Builder Crashes .. 466
15.3.2. Older Data File Cannot Be Loaded in Firewall Builder 467
15.3.3. "I/O Error" While Compiling policy. No Other Error. 467
15.3.4. ios_base::failbit set on Windows .. 467
15.3.5. "Cannot create virtual address NN.NN.NN.NN" .. 467

15.4. Troubleshooting installing policy on the firewall ... 468
15.4.1. Plink.exe fails while trying to activate the firewall policy with an error 'Look-
ing up host "" Connecting to 0.0.0.0 port 22' .. 468

15.5. Running the Firewall Script ... 469
15.5.1. Determining which rule caused an error .. 469
15.5.2. "ip: command not found" ... 470
15.5.3. I get the following error when I run generated script for iptables firewall: "ipt-
ables v1.2.8: can't initialize iptables table 'drop': Table does not exits (do you need to
insmod?) Perhaps iptables or your kernel needs to be upgraded." 470
15.5.4. "Interface eth0 does not exist" ... 470
15.5.5. "Interface eth0:1 does not exist" .. 470
15.5.6. Script fails to load module nf_conntrack .. 471

15.6. RCS Troubleshooting ... 471
15.6.1. Error adding file to RCS .. 471
15.6.2. "Error checking file out: co: RCS file c:/fwbuilder/RCS/file.fwb is in use" 472
15.6.3. "Error checking file out:" ... 472

15.7. Issues after new policy activation ... 473
15.7.1. Cannot access only some web sites .. 473
15.7.2. Firewall becomes very slow with new policy .. 473
15.7.3. X won't start on a server protected by the firewall 474
15.7.4. Cannot access Internet from behind firewall ... 475
15.7.5. Installing updated firewall policy seems to make no difference 475

15.8. Routing Rules Issues .. 476
15.8.1. Compile fails with dynamic or point-to-point interfaces 476

Firewall Builder 5 User's Guide

viii

16. Appendix .. 477
16.1. iptables modules .. 477

16.1.1. Installing the iptables ipset Module Using xtables-addons 477
16.1.2. Installing the iptables ipset module ... 478

1

Chapter 1. Introduction
1.1. Introducing Firewall Builder

Firewall Builder simplifies the firewall policy management for a number of firewall platforms, including
Netfilter/iptables, ipfw, PF, Cisco PIX, and others. Firewall Builder provides a professional-grade GUI to
these platforms, simplifying administration tasks.

With Firewall Builder, you can manage the security policy of your firewall efficiently and accurately,
without the learning curve usually associated with command line interfaces. Instead of thinking in terms
of obscure commands and parameters, you simply create a set of objects describing your firewall, servers,
and subnets, and then implement your firewall policy by dragging objects into policy rules. You can also
take advantage of a large collection of predefined objects describing many standard protocols and services.
Once a policy is built in the GUI, you can compile it and install it on one, or several, firewall machines.

Figure 1.1.

1.2. Overview of Firewall Builder Features
Firewall Builder helps you write and manage configuration for your firewalls. It writes iptables shell
scripts, pf.conf files, Cisco router access lists, or PIX configurations for you. You can then copy and paste
configurations generated by Firewall Builder, copy the files manually or using your own scripts, or use
built-in functions to configure the firewall. Firewall Builder provides change control and search functions.
It allows you to reuse the same address and service objects in the rules of many firewalls. It simplifies
coordinated changes of the rules in multi-vendor environments and helps avoid errors in generated con-
figurations.

Firewall Builder can generate complex iptables, PF, Cisco IOS extended access lists, Cisco ASA (PIX)
configurations. You do not have to remember all the details of their syntax and internal operation. This
saves time and helps avoid errors.

Introduction

2

Rules built in the GUI look exactly the same and use the same set of objects describing your network
regardless of the actual firewall platform you use. You only need to learn the program once to be able to
build or modify basic configuration for iptables, PF, or Cisco routers or firewalls. Already an expert in
one or several firewall platforms? Firewall Builder can help you utilize advanced features, too.

Configuration files for the target firewall are auto-generated, so they don't have syntax errors and typos.
Firewall Builder has information about features and limitations of supported firewall platforms. This means
you can detect errors before you actually enter commands on the firewall, when it is too late. Firewall
Builder helps you avoid many types of errors at the earliest opportunity; for example, it can detect rule
shadowing, a common cause of errors in the policy structure.

Create an object to represent your network, a server, or service once and use it many times. Port number
or address changes? No need to scan all the rules of all routers and firewalls to find them. Just change
them in the object, recompile, push updated configuration, and you are done. At the same time, the GUI
provides powerful search functions that help you find all the rules of all firewalls that use some object and
perform search and replace operations.

If you work for a large distributed organization with many administrators, you can assemble address and
service objects that describe your network in a library and save it to a data file, then distribute it for other
administrators to use. You can also create your own templates for the firewall objects and rules and use
them to quickly create new configurations.

Firewall Builder helps perform transitions between different versions of the same firewall (iptables, PF,
PIX); from one platform to another; or from IPv4 to IPv6.

You work with an abstract policy that operates with objects. We spend time studying differences between
iptables and PIX or between different versions of each so that you don't have to.

Firewall Builder makes it easy to add IPv6 rules to your existing firewall policies. Create objects describing
your IPv6 network, add them to the same rule set that defines your security policy for IPv4, and configure
it as a "mixed IPv4+IPv6 rule set". The program generates two configurations, one for IPv4 and another for
IPv6, using correct objects for each. There is no need to maintain two policies in parallel for the transition
from IPv4 to IPv6.

You can generate configuration for a range of devices, starting from small Linksys, D-Link and other
routers running DD-WRT or OpenWRT, to firewalls running Linux, FreeBSD or OpenBSD on a regular or
purpose-built PC, to Cisco routers and Cisco ASA (PIX) firewalls.

Firewall Builder has been designed to manage both dedicated remote firewalls and local firewall config-
urations for servers, workstations, and laptops.

Firewall Builder can generate scripts that set up interfaces, ip addresses, snmp, ntp and logging parameters
and other aspects of the general configuration of the firewall machine.

Make coordinated changes in multi-vendor environments: Do you have Cisco routers with extended ACLs,
dedicated Cisco ASA (PIX) firewalls, Linux or BSD firewalls, and servers, and you need to make changes
in configurations of all these devices to enable a new service? Firewall Builder helps you make coordinated
changes in an environment like this.

Have all the advantages of the GUI and object-oriented policy design with your existing firewalls and
routers, whether they are Linux, BSD, or Cisco devices. Protect your investment, and keep existing equip-
ment whose performance you are happy with. You can import existing iptables and Cisco router config-
uration into Firewall Builder.

The built-in policy installer is flexible, using SSH for a secure communication channel to each firewall,
and has many safeguards to make sure you never cut yourself off from a firewall in case of policy mistake.
The policy installer can deploy to one firewall or to many firewalls and routers in a batch.

Introduction

3

Is this new stuff? Not at all. The project has been registered on SourceForge [http://sourceforge.net/
projects/fwbuilderr] since 2000 and on Freshmeat [http://freshmeat.net/projects/fwbuilderr] since 2001.
Since then, it has undergone several major releases. The open-source version is distributed under GPL, is
included in major Linux distributions, and is part of the FreeBSD and OpenBSD ports systems. Firewall
Builder is dual-licensed; packages for Windows and Mac OS X are distributed under traditional EULA
for a reasonable fee. More... [http://www.fwbuilder.org/docs/firewall_builder_licensing.html]

Documentation is freely available online. Start with the Firewall Builder User's Guide (avail-
able in PDF [http://www.fwbuilder.org/4.0/docs/users_guide5/UsersGuide5.pdf] and HTML [http://
www.fwbuilder.org/4.0/docs/users_guide5/] formats). The User's Guide explains the program in de-
tail and includes a large "CookBook" section that presents typical firewall rule design problems
and demonstrates how they can be solved with Firewall Builder. There is also an FAQ [http://
www.fwbuilder.org/docs/firewall_builder_faq.html], an Installation Guide [http://www.fwbuilder.org/
docs/firewall_builder_installation.html] and a set of Release Notes [http://www.fwbuilder.org/docs/
firewall_builder_release_notes.html] for each version.

We provide support via e-mail, an active mailing list [http://lists.sourceforge.net/lists/listinfo/fw-
builderr-discussion], and online forum [https://sourceforge.net/projects/fwbuilderr/forums/forum/16372].
Follow the Firewall Builder blog [http://blog.fwbuilder.org/] to get the latest project news.

http://sourceforge.net/projects/fwbuilderr
http://sourceforge.net/projects/fwbuilderr
http://sourceforge.net/projects/fwbuilderr
http://freshmeat.net/projects/fwbuilderr
http://freshmeat.net/projects/fwbuilderr
http://www.fwbuilder.org/docs/firewall_builder_licensing.html
http://www.fwbuilder.org/docs/firewall_builder_licensing.html
http://www.fwbuilder.org/4.0/docs/users_guide5/UsersGuide5.pdf
http://www.fwbuilder.org/4.0/docs/users_guide5/UsersGuide5.pdf
http://www.fwbuilder.org/4.0/docs/users_guide5/
http://www.fwbuilder.org/4.0/docs/users_guide5/
http://www.fwbuilder.org/4.0/docs/users_guide5/
http://www.fwbuilder.org/docs/firewall_builder_faq.html
http://www.fwbuilder.org/docs/firewall_builder_faq.html
http://www.fwbuilder.org/docs/firewall_builder_faq.html
http://www.fwbuilder.org/docs/firewall_builder_installation.html
http://www.fwbuilder.org/docs/firewall_builder_installation.html
http://www.fwbuilder.org/docs/firewall_builder_installation.html
http://www.fwbuilder.org/docs/firewall_builder_release_notes.html
http://www.fwbuilder.org/docs/firewall_builder_release_notes.html
http://www.fwbuilder.org/docs/firewall_builder_release_notes.html
http://lists.sourceforge.net/lists/listinfo/fwbuilderr-discussion
http://lists.sourceforge.net/lists/listinfo/fwbuilderr-discussion
http://lists.sourceforge.net/lists/listinfo/fwbuilderr-discussion
https://sourceforge.net/projects/fwbuilderr/forums/forum/16372
https://sourceforge.net/projects/fwbuilderr/forums/forum/16372
http://blog.fwbuilder.org/
http://blog.fwbuilder.org/

4

Chapter 2. Installing Firewall Builder
2.1. RPM-Based Distributions (Red Hat, Fedora,
OpenSUSE, and Others)

Using pre-built binary RPM

You need to download and install the Firewall Builder RPM:

• Example: fwbuilder-4.2.2.3541-1.el5.i386.rpm

To satisfy dependencies, you need the following packages installed on your system:

• libxml2 v2.4.10 or newer

• libxslt v1.0.7 o newer

• ucd-snmp or net-snmp

• QT 4.3.x, 4.4.x, 4.5.x, 4.6.x. Firewall Builder uses features available in QT 4.3 and later; the system
does not support version 4.2 and earlier.

Pre-built binary RPMs for RedHat Enterprise Linux 5 (RHEL 5) and CentOS 5.x

These distributions do not come with QT4, and third-party binary RPMs of QT v4.3.x and 4.4.x can be
difficult to obtain. For these distributions, we distribute binary RPMs of Firewall Builder 4.0 statically
linked with QT 4.4.1. These RPMs are posted in the Downloads area of the SourceForge project site. These
RPMs have the same standard names fwbuilder-4.2.2.3541-1.el5.i386.rpm, but they have
no dependency on QT RPMs.

If a Firewall Builder V3.0 distribution statically linked with QT crashes on start on your CentOS sys-
tem, please upgrade to the latest version of Firewall Builder. If you need to run Firewall Builder V3.0
please make sure you have the following font packages installed: bitmap-fonts or bitstream-ve-
ra-fonts. Either one resolves the issue and will enable Firewall Builder to work.

To install Firewall Builder, navigate to your download directory and execute the following command
(replacing the filename with the name of the files you actually downloaded):

rpm -i fwbuilder-4.0.0-1.i386.rpm

2.2. Ubuntu Installation
Using pre-built binary packages

You need to download and install the Firewall Builder package:

• Example: fwbuilder_4.2.2.3541-ubuntu-karmic-1_i386.deb

To satisfy dependencies, you need the following packages installed on your system:

• QT 4.3.x, 4.4.x, 4.5.x, 4.6.x. Firewall Builder uses features available in QT 4.3 and later; the system
does not support version 4.2 and earlier.

Installing Firewall Builder

5

You can obtain QT using your favorite package manager.

To install Firewall Builder, go to your download directory and execute the following command (replacing
the filenames with the names of the files you actually downloaded):

dpkg -i fwbuilder_4.2.2.3541-ubuntu-karmic-1_i386.deb

2.3. Installing FreeBSD and OpenBSD Ports
Firewall Builder consists of two ports: /usr/ports/security/libfwbuilder and /usr/
ports/security/fwbuilder. Once both ports are updated (which typically takes two to three
weeks after the package is released), simply install the port as usual using portinstall or issuing the
"make install" command in /usr/ports/security/fwbuilder.

2.4. Windows Installation
To install onto a Windows system, double-click the package file, then follow the step-by-step instructions
in the Installation wizard.

2.5. Mac OS X Installation
The Mac OS X package is distributed in the form of a disk image (that is, a .dmg file). Double-click
the image to mount it, then drag the Firewall Builder application to your Applications folder (or any
other location).

2.6. Compiling from Source
Firewall Builder can be compiled and works on the following OS and distributions: Debian Linux (includ-
ing Ubuntu), Mandrake Linux, RedHat Linux, SuSE Linux, Gentoo Linux, FreeBSD, OpenBSD, Mac OS
X, and Solaris.

To compile from source, first download the dependencies for your platform:

For RedHat-based systems:

• automake
• autoconf
• libtool
• libxml2-devel
• libxslt-devel
• net-snmp-devel
• qt
• qt-devel
• qt-x11

You may need to install the packages elfutils-libelf and elfutils-libelf-devel (li-
belf on SuSE), otherwise libfwbuilder does not pick up the net-snmp library even if it is installed.

For Debian-based systems:

• automake
• autoconf

Installing Firewall Builder

6

• libtool
• libxml2-dev
• libxslt-dev
• libsnmp-dev
• libqt4-core
• libqt4-dev
• libqt4-gui
• qt4-dev-tools

Next, download the source archives from SourceForge, for example
fwbuilder-4.2.2.3541.tar.gz, and unpack them to a location. Then build as follows:

cd /fwbuilder-<version_number>
./autogen.sh
make
make install

Compilation may require other packages for RedHat and SuSE

If you observe errors that refer to missing autoconf macros while running autogen.sh for
fwbuilder, check to ensure your system includes RPM gettext-devel. You may need to
add other "development" RPMs besides these, but these two are often forgotten.

The configure scripts for fwbuilder tries to find your QT4 installation in several standard places. How-
ever, if you installed QT in a directory where the script is unable to find it, you can provide the path to it
using the --with-qtdir option to script autogen.sh, as in the following example:

cd /fwbuilder-<version_number>
./autogen.sh --with-qtdir=/opt/qt4
make
make install

By default, script configure assumes prefix="/usr/local" and installs libraries in /usr/lo-
cal/lib and binaries in /usr/local/bin. Make sure /usr/local/lib is added to your
LD_LIBRARY_PATH environment variable or to the /etc/ld.so.conf configuration file; otherwise
the program will be unable to find dynamic libraries there. Likewise, /usr/local/bin must be in-
cluded in your PATH.

You can install libraries and binaries in a different place by specifying a new prefix, as follows:

./autogen.sh --prefix="/opt"

This command installs libraries in /opt/lib and the program in /opt/bin.

7

Chapter 3. Definitions and Terms
This chapter defines common terms that pertain to the Firewall Builder program.

Firewall The term firewall can refer to a device that implements firewall software, or it can
refer to the complete set of software and policies running on the device, or it can refer
to just a firewall access policy.

In this document, the term firewall refers the firewall object in Firewall Builder. A
firewall object contains a logical representation of a firewall device's interfaces, its
access policy rule set, its NAT rule set, and the routing rule set to be placed on the
firewall device.

Policy The term policy can refer to the entire set of "business logic" that is implemented in
the firewall or it can refer to the access policy portion of firewall only.

In this document, the term policy refers to the access policy rule set.

8

Chapter 4. Firewall Builder GUI
The Firewall Builder GUI is your workspace for creating and compiling a firewall policy. In the workspace,
you create objects, which are logical representations of your servers, network services, subnetworks, and
other aspects of your network. You then use these objects in your policy.

You use cFirewall Builder to compile your policy for your target firewall platform, and, if you like, to
deploy the policy fto the actual firewall.

This chapter provides a high-level overview of the Firewall Builder GUI and how it works. Later chapters
describe using the GUI to accomplish specific tasks.

The Firewall Builder GUI consists of a main window and some dialog boxes. In the next section, we
describe the main window.

4.1. The Main Window
This figure shows the Firewall Builder GUI with a single object file open.

Figure 4.1. The Main Window

The sections of the main window are as follows:

Table 4.1. Main window

Window area Explanation

Menus and tool bar Firewall Builder comes with menus and a tool bar at the top of the win-
dow.

Firewall Builder GUI

9

Window area Explanation

Figure 4.2. Menu and Tool Bars

The Object Tree Displayed on the left side of the window, the object tree displays fire-
walls, hosts, interfaces, services, and other "objects" that you will use
when creating policies for your firewall.

Section 4.3 describes the objects in the tree and shows how to filter the
object tree.

Figure 4.3. The Object Tree

The Policy Rule Set Work-
space

Displayed to the right of the object tree, this area holds the rule set you
are currently working on. This space is blank when you first load an ob-
ject file. It only appears when you double-click a policy, NAT, or rout-
ing rule set link in a firewall object. (This means that you have to create a
firewall object before you can work on a policy.)

See Section 5.2.2 for instructions on creating a firewall object. See Chap-
ter 7 for instructions on working with policies.

The + button on the left inserts a new rule in the open policy above the
currently selected rule. The buttons on the top right of the policy window
are shortcuts to compile, compile-and-install and inspect generated files.

Figure 4.4. The Policy Area

The Object Editor Dialog The dialog area, across the bottom of the main window, is where you
make changes to object parameters, perform find and replace operations,
and view the output from single-rule compiles. The dialog area is not vis-
ible until you double-click an object.

The dialog has three tabs and three uses: editing an object's parameters,
doing a find or find-and-replace on an object, and displaying the output
of a single-rule compile run. Close the dialog by clicking the X.

Firewall Builder GUI

10

Window area Explanation

In the object editor dialog, you can make changes to an object's parame-
ters. Changes made to a field in the dialog are saved whenever you click
out of the field, or when you press the Tab or Enter key. (Note that this
does not change the data in the .fwb file until you save the file itself.) If
you wish to cancel a change, select Edit > Undo. For more information
on objects and their parameters, see Chapter 5.

Figure 4.5. Object Editor, Partial View

You can search for objects and rule sets across your object files, plus do
replacements of objects. See Section 5.7 for an explanation of the Find-
and-Replace tab.

Figure 4.6. Find-and-Replace Object dialog, Partial View

You can compile individual rules and see how the rule gets converted in-
to firewall instructions. See Section 14.4.2.3 for details on compiling a
single rule and viewing the results in the Output tab.

Figure 4.7. Output View, Partial View

Undo Stack Displayed on the right side of the window, the Undo Stack is not dis-
played by default. To activate it, select View > Undo Stack.

Firewall Builder GUI

11

Window area Explanation

As you make changes to your object file, those changes show up in the
Undo Stack window. You can "undo" an action by clicking the action
above it (in other words, prior to it) in the window. Clicking any action
in the window rolls back all changes after that action. However, the "fu-
ture" changes stay in the Undo Stack until you make another edit. At that
point, all changes after the current point in the stack are removed.

The Undo Stack can "float" as its own window by clicking the button at
the top of the panel next to the close button.

See Section 4.4.1 for a more detailed explanation of the Undo Stack win-
dow.

Figure 4.8. Undo Stack

You can open more than one object file window at a time, and you can copy objects between them. See
Section 4.6 for an example of working with multiple data files.

4.2. GUI Menu and Tool Bars
This section describes the commands available in the GUI menus and tool bar.

4.2.1. File Menu

The File menu provides standard file management options, and in addition allows you to import and export
libraries and manage your object files with the revision control system.

Table 4.2. File Menu

File Menu Entry Explanation

New Object File Opens a "file" dialog that lets you name your new object file. Object file
names end with ".fwb". In general, you should create a new directory for
your object files.

Open... Opens a standard "file" dialog that lets you select an existing file. The file
dialog, by default, only looks for files that end in ".fwb".

Open Recent Contains a submenu listing recently opened object files.

Save Saves the current file.

Save As... Opens a "file" dialog that lets you save the object file under a new name.

Close Closes the current object file, but does not exit the program.

Firewall Builder GUI

12

File Menu Entry Explanation

Properties Opens a dialog indicating properties of the current file, including revision
control information (if applicable.) (Program preferences are in the Edit
menu.)

Add File to RCS This menu item adds the object file to reversion control. See Section 7.7
for a detailed explanation.

Commit Commits current changes to RCS. (This option is grayed out if the file
has not already been added to RCS.) See Section 7.7 for a detailed expla-
nation.

Discard Discards current changes. (This option is grayed out if the file has not al-
ready been added to RCS.) See Section 7.7 for a detailed explanation.

Import Firewall Allows you to import an existing firewall policy into Firewall Builder.
See Section 6.3 for a detailed explanation.

Import Library Lets you import an Object Library. (See Export Library.)

Export Library Brings up a dialog that lets you select which Object Library you wish to
export to a ".fwl" file. Once a library is exported, you can import it in-
to another instantiation of Firewall Builder. This is particularly useful in
Enterprise settings that have multiple Firewall Builder workstations and
administrators.

Print Lets you print your policy.

Exit Closes Firewall Builder.

4.2.2. Edit Menu

The Edit options are standard for GUI-based tools. Preferences for Firewall Builder are described in Sec-
tion 4.5.

4.2.3. View Menu

The View menu lets you turn on or off various display panes.

Table 4.3. View Menu

View Menu entry Explanation

Object Tree If checked, the object tree is displayed

Editor Panel Displays the object editor. You can also display this panel by dou-
ble-clicking an object.

Undo Stack Displays the undo history. You can undo several changes by clicking on
the last change you want to keep. With th e next change, all changes after
the current one are removed from the undo history.

4.2.4. Object Menu

The Object menu lets you create a new object, find occurrences of an object (including doing replaces),
lock an object to prevent accidental changes, and unlock an object when you need to edit it.

Firewall Builder GUI

13

Table 4.4. Object Menu

Object Menu entry Explanation

New Object Opens a menu of all possible object types. Select one to create a new ob-
ject of that type. Section 4.3.4 describes how to create objects.

Find Object Opens the Find object dialog, which also provides search and replace
functions. Section 5.7 explains how to use this dialog.

Lock Makes the selected object read-only, which prevents accidental modifi-
cation. An object that is locked has a little padlock for its icon. In this ex-
ample, the eth0 interface of test server is locked. Locking the eth0 inter-
face object also renders read-only the address objects associated with the
interface. (Note that the test server object, located "above" eth0 in the hi-
erarchy, is still editable.)

Figure 4.9. Locked Object

Unlock Unlocks the selected object. The object becomes editable, and the objects
associated with it become editable as well, unless they have their own
locks.

Figure 4.10. Unlocked Object

4.2.5. Rules Menu
The Rules menu lets you add, delete, and rearrange rules and rule groups in a policy. In addition, the
Rules menu lets you compile an individual rule or an entire policy or install an entire policy. The menu is
context-sensitive, so not all options are visible at all times. See Section 7.5 for details.

4.2.6. Tools Menu
The Tools menu provides access to useful tools.

Table 4.5. Tools Menu

Tools Menu entry Explanation

Find Conflicting Objects in
Two Files

Launches a tool that lets you specify two object files (.fwb) or two library
files (.fwl). The tool then looks for objects that have the same ID, but dif-
ferent characteristics. This kind of conflict would cause a problem if you
wanted to merge the files.

Import Addresses From File Launches a wizard that lets you import objects from a file in /etc/
hosts format.

Discovery Networks and
Hosts via SNMP

Launches a wizard that lets you populate many objects automatically us-
ing an SNMP crawl of your network. Section 6.2 explains the tool.

Firewall Builder GUI

14

4.2.7. Window Menu
The Window menu provides controls for selecting and rearranging object file windows. This feature works
similarly to Window menus in most GUIs.

4.2.8. Help Menu
The Help menu provides access to help resources, information about the current version of Firewall
Builder, and a dialog with debugging information.

4.2.9. Object Context Menu
The Context Menu for a particular object provides a short-cut to menu commands for that object. Right-
click an object's label to bring up a menu of the following functions:

Table 4.6. Object Right-Click Menu

Right-Click Menu Entry Explanation

Edit Opens the Editor dialog for that object. (You can achieve the same result
by double-clicking the object.)

Duplicate Places a copy of the object into the specified library. (If no user-created
libraries exist, then Firewall Builder puts the object in the User tree by
default.) The new object has the same name as the original object, unless
that object name is already in use in that tree. If so, a "-1" is appended to
the object name.

Move Deletes the object from the current library and places it in the selected
new library.

Copy Copies an object onto the clipboard.

Cut Copies an object onto the clipboard and removes it from the tree.

Paste Puts a copy of the object on the clipboard into a tree or into the policy,
depending on where the mouse is when you click.

Delete Deletes an object without making a copy on the clipboard. If the Deleted
Objects tree has been enabled, the object shows up there.

Find Brings up a Find/Find-and-Replace panel, which is another tab in the
object dialog. Click Next in the panel to see all instances of the object
boxed in red.

To do a Search and Replace, drag another object into the Replace object
box, specify a scope for the replacement using the pull-down menu, and
then use the Replace All, Replace, Replace & Find, and Next buttons.

Section 5.7 has details on this dialog.

Where Used Scans the whole tree, including all groups and policies of all firewalls,
looking for references to the object. When finished, the program shows
a pop-up dialog with icons corresponding to groups and firewalls using
the object. Double-clicking an icon opens the corresponding object in the
main window.

Group Only active if multiple objects are selected. This operation will open a
dialog for you to enter a group name and select the Library the group
should be created in.

Firewall Builder GUI

15

Right-Click Menu Entry Explanation

Keywords Add or remove a keyword from the selected object(s). To apply a key-
word that doesn't exist yet select Add -> New Keyword.

Lock and Unlock Lock makes an object read-only, which prevents accidental modification.
Unlock places the object back into read/write mode.

The pop-up menu can also have items to add interface and address objects, depending on the type of object
that was clicked.

In addition, the right-click context menu on policy rules has a selection for Compile Rule. Sele cting this
option compiles the rule and displays the output in the Output tab of the Editor dialog. See Section 14.4.2.3
for details on compiling a single rule and viewing the results in the Output tab.

4.2.10. Tool Bar

The Tool Bar has buttons for commonly used functions:

Figure 4.11. Buttons

Table 4.7. Tool Bar

Button Explanation

Open Opens a standard "file" dialog that lets you select an existing file. The file
dialog, by default, only looks for files that end in ".fwb".

Save Saves the current file.

Back Navigation tool that changes the active selection to an earlier selection in
the selection history.

Forward Navigation tool that changes the active selection to the next selection if
you have used the Back button to navigate the selection history.

New Object Activates dropdown menu that allows you to create a new object of any
object type, including creating a new Library object.

Find Object Opens the Find object dialog, which also provides search-and-replace
functions. Section 5.7 explains how to use this dialog.

Compile Opens the compile wizard for all firewalls in the current object file. The
compile button on an individual file opens the compile dialog for just the
selected firewall. Chapter 10 explains this in more detail.

Install Opens the compile/install wizard for all firewalls in the current object
file. The compile/install button on an individual file opens the com-
pile/install dialog for just the selected firewall. Chapter 10 explains this
in more detail.

Firewall Builder GUI

16

4.3. Object Tree
Figure 4.12. Object Tree Structure

The object tree stores all objects in a predefined hierarchy:

• Types that correspond to network objects (hosts, address ranges, networks, and groups of these) are
located in the Objects branch.

• Types that correspond to services are located in the Services branch.

• Time intervals are located in the Time branch.

• All firewalls are located in the Firewalls branch.

Newly created objects are automatically placed in the appropriate position in the tree. Each branch of the
tree is automatically sorted by the object name.

The program has three default libraries: User, Standard, and Deleted Objects.

• The User library holds objects that you define, including objects for your firewall, hosts, and networks.

• The Standard library holds a collection of predefined standard objects that come with Firewall Builder.
Note that you need not (and cannot) insert objects into the Standard tree.

• The Deleted Objects library acts like a trash can or recycle bin for user objects you delete. Note that
the Deleted Objects library must be enabled using the File > Preferences > Objects > Show deleted
objects menu option.

In addition, you can create custom libraries by selecting New Library from the New Object menu. You
can populate the new library by copying and pasting objects other views or by creating them from scratch
within the new library. Section 5.6 provides instructions for creating and distributing user-defined libraries.

Functionally, there is no difference between having an object in the Standard tree, the User tree, or a user-
defined tree; it is just a convenient way to sort objects in the tree. You can think of each as a kind of the
"view". The choice of tree affect only the display of the data in the GUI; objects are all equal in all other
senses and you can use an object from any library in your policy.

The object that is currently selected in the tree is highlighted in color and is shown in the dialog area on
the right.

Firewall Builder GUI

17

Figure 4.13. Standard Objects

Firewall Builder understands and uses the object and service types described in the table below. See Chap-
ter 5 and Section 5.3 for more detailed information.

Table 4.8. Object Types

Object Type Explanation

Library A library of objects. Firewall Builder comes with the User, Standard, and
Deleted Objects libraries. In addition, you can create your own.

Cluster A high-availability pair of firewall devices. The firewall objects them-
selves must be created as firewall objects, then added to the cluster. The
cluster's platform and OS settings must match those of the component
firewalls.

Firewall A physical firewall device, its interfaces and addresses, and the policy
rule sets associated with the device. Use Firewall Builder to model your
actual device's firewall software, OS, interfaces and addresses. Then, use
Firewall Builder to construct the policy rule sets to assign to the device.

Host A computer on your network. Hosts can have interfaces associated with
them.

Interface A physical interface on a firewall or host. Interfaces can have IP and
physical (MAC) addresses associated with them. An IP address can be
created from the New Object for the selected interface, but physical ad-
dresses can only be created by right-clicking on an interface object.

Network An IPv4 subnet

Network IPv6 An IPv6 subnet

Address An IPv4 address

Address IPv6 An IPv6 address

DNS Name A DNS "A" or "AAAA" record. This name is resolved into an IP address
at compile or run time.

Address Table An IP address. Objects of this type can be configured with the name of an
external file that is expected to contain a list of IP addresses. Mixing IPv4

Firewall Builder GUI

18

Object Type Explanation

and IPv6 addresses is supported. Addresses can be loaded during policy
compile or during the execution of a generated firewall script.

Address Range A range of IPv4 or IPv6 IP addresses. This range does not have to be a
specific subnet, but address must be contiguous.

Object Group A collection of addressable objects (objects that have or contain IP ad-
dresses) such as network, interface, and hosts objects. A group is useful
for creating a less cluttered-looking firewall policy and for making sure
you have the same objects in every related rule.

Dynamic Group Dynamic Groups include filters based on the object type and keywords in
order to build a dynamic list of objects that will be included in the group.
Dynamic Groups are used in rules in the same way that standard Object
Groups are. When a firewall is compiled the Dynamic Group is expanded
to include all the object matching the filter rules when the compile is run.

Custom Service An object that can be used to inject arbitrary code into the generated fire-
wall script.

ESTABLISHED and
ESTABLISHED IPv6 Ser-
vices

An object matching all packets that are part of network connections es-
tablished through the firewall, or connections 'related' to those estab-
lished through the firewall. (The term "established" here refers to the
state tracking mechanism used by iptables and other stateful firewalls; it
does not imply any particular combination of packet header options.)

IP Service An IP service such as GRE, ESP, or VRRP. This category is meant to in-
clude IP services that do not fall into ICMP, ICMP6, TCP, or UDP ser-
vice categories.

ICMP Service An ICMP service such as a ping request or reply.

ICMP6 Service An ICMP6 service such as "ipv6 packet too big", "ipv6 ping request", or
"ipv6 ping reply".

TCP Service A TCP service such as HTTP, SMTP, or FTP.

UDP Service A UDP service such as DNS or NTP.

TagService A service object that lets you examine the tag in an IP header. You can
then construct your rule to take appropriate action on a match.

User Service A service object that matches the owner of the process on the firewall
that sends the packet. This object correlates to the "owner" match in ipta-
bles and the "user" parameter for PF.

Service Group A collection of services. For example, Firewall Builder comes with the
Useful_ICMP service group containing the "time exceeded", "time ex-
ceeded in transit", "ping reply", and "all ICMP unreachable" ICMP ser-
vices. It also comes with a "DNS" service group containing both the UDP
and TCP version of DNS. Grouping services is useful for creating a less
cluttered-looking firewall policy and for making sure you have the same
objects in every related rule.

Time Interval A time period such as "weekends" or a range of dates, or a range of times
on certain days of the week. Can be used as part of rule matching in Ac-
cess Policy rule sets to provide or deny access to something based on
time. Note that these time intervals are relative to the time on the firewall
device itself.

Firewall Builder GUI

19

4.3.1. Using Subfolders to Organize Object Tree

Firewall Builder comes with a set of predefined system folders as shown in Figure 4.12. You can also
create your own subfolders in the Object Tree to help organize your objects.

Figure 4.14 shows the object tree of a retailer with multiple stores in several cities. As you you can see
the objects are not grouped together which can make it hard to quickly find the object you are looking for.
Subfolders provide an easy way to organize your objects.

Figure 4.14. Object Tree without Subfolders

To add a subfolder right-click on one of the system folders, in this case we are going to start with the
Firewalls folder, and select the New Subfolder menu item.

Firewall Builder GUI

20

Figure 4.15. Add Firewalls Subfolder

A dialog window will appear. Enter the name of your subfolder an click OK. In this case we will create a
new subfolder called "Berlin" to hold all the Firewall objects located in Berlin.

To add the firewalls to the Berlin subfolder, select the firewall objects in the tree as shown in Figure 4.16,
and drag-and-drop the firewalls onto the Berlin subfolder.

Figure 4.16. Moving Objects to Subfolder

Figure 4.17 shows the Object Tree after folders have been created for both London and New York and the
firewalls at each of these locations have been moved to the subfolder. As you can see this makes it much
easier to find things quickly in your tree.

Firewall Builder GUI

21

Figure 4.17. Subfolders for Firewalls

While this example showed using subfolders in the Firewalls system folder, you can create subfolders in
any of the predefined system folders.

Note

To delete a subfolder simply right-click on the subfolder and select Delete. If there are objects
in the subfolder Firewall Builder will pop-up a warning showing the locations where the objects
that are going to be deleted are used.

If you don't want to delete the objects in the subfolder then you first need to move them to the
system folder by selecting all the objects in the subfolder and dragging-and-dropping them onto
the system folder that is the parent of the subfolder you want to delete.

4.3.2. Filtering the Object Tree

The object tree can hold a great many objects, nested in their respective categories. You can filter the tree
to show only certain objects and categories appear based on a string. For example, typing "eth" in the Filter
field causes all the objects with "eth" in the object name to appear.

As your configuration grows you will find that it becomes harder to quickly find the objects you are looking
for. This example shows how filtering helps. Before filtering the object tree looks like Figure 4.18.

Firewall Builder GUI

22

Figure 4.18. Empty Filter Field

In the example, the word "new york" is typed into Filter field, with the goal of retrieving all address-related
objects. As the screen shot below shows, filtering takes effect immediately. In the example, only "new"
has been typed but the tree is already filtered by those characters, showing the Address Range, Addresses,
Groups, and Networks objects that include "new" in their name. Filters are not case sensitive.

Figure 4.19. Populated Filter Field

Click the X in the filter box to clear the active filter.

Firewall Builder GUI

23

4.3.3. Object Attributes in the Tree

If you check the Show object attributes in the tree checkbox in the Preferences > Object tab, the object
tree displays a second column of information, as shown below.

Figure 4.20. Object Attributes Column

The information shown depends on the type of object.

If you check the checkbox but don't see the second column, make the panel wider until you see the column
separator, then drag the column separator until the columns are in the correct position. Column sizing is
saved with the object file, so the next time you open the object, the column display preservers your changes.

4.3.4. Creating Objects

New objects can be created using the New Object menu, accessed by clicking this icon above the object
tree:

Figure 4.21. Create Objects button

Certain objects can also be created using a pop-up menu. Acccess this menu by right-clicking a parent
object in the tree.

Firewall Builder GUI

24

Figure 4.22. Creating Objects Using The Object Menu

You can create all objects except physical address objects through the New Object menu. (Physical address
objects can only be created by right-clicking an existing interface object.) You can also create objects by
right-clicking a folder in a tree (though not in the read-only Standard tree). If you right-click a folder, you
can only create objects appropriate to that folder. For example, an interface object can only be placed under
a host or firewall object, so the Add Interface option is available only if you right-click a host or firewall.

Figure 4.23. Creating Objects by Right-Clicking

Another way to create objects is to use the Duplicate option when you right-click an object. This allows
you to create a copy of the object. For example, you may want to create a firewall policy for one platform,
duplicate it, then just change the target platform on the copy. Note that copies are not linked in any way.
A change to the original has no affect on the copy, and vice versa.

4.4. Undo and Redo
Firewall Builder supports undo and redo functions from the GUI and from the keyboard. In the GUI, both
functions are located in the Edit menu. The keyboard commands are Ctrl-Z for Undo, and Ctrl-Y for Redo.

Firewall Builder GUI

25

4.4.1. Undo Stack

The undo stack shows you a list of your changes, and lets you roll back changes you don't want. You can
roll back just one change, all changes after a certain point, or all changes.

Press Ctrl-Z to undo an action. The undo stack is essentially unlimited, so you can press Ctrl-Z repeatedly
to roll back a series of changes. You can also you can view the Undo stack directly by selecting Edit >
Undo Stack. From that view, you can roll back several changes with a single mouse click.

Note that a change enters the undo stack as soon as you "commit" the change. For dragging and dropping,
a change is committed as soon as you drag an object into a new position, at which time that change appears
in the undo stack. For field edits, the change appears as soon as you move the GUI focus out of a field by
pressing Enter or Tab, or by clicking outside the field.

Rolling back a change does not immediately remove that change from the stack. You can "redo" a change
by clicking it. Changes after the current change stay in the stack until you perform a new edit. At that point,
the new change appears as current, and all the undone changes after that point are removed from the stack.

The following figure shows a portion of an object tree, an access policy, and the undo stack. The stack
has been "floated," so it can be moved as its own window. (To make an object float, click the button next
to the close button.)

In the example stack, a new, blank rule has just been added to the policy.

Figure 4.24. Policy and the Undo Stack

The "inside range" IP object is now added to the Source of the new rule, and the "outside range 2" IP
object is added to the Destination of the rule. However, in this example, we have made a mistake: Instead
of adding "outside range 2" to the Destination, we accidentally added the "outside range" object to the
Source field.

You can see the object in the policy and the undo history in the following screenshot.

Firewall Builder GUI

26

Figure 4.25. Added Inside Range and Outside Range

To fix the error, we do two things. First, we click on "insert inside range" in the Undo Stack. This rolls
back the stack to before the point at which we inserted "outside range 2."

Figure 4.26. Removed Outside Range from Source

Next, we drag "outside range 2" into the Destination field. You can see that the "insert outside range"
entry has been remo ved from the stack, and the "insert outside range 2" edit now appears as the most
recent change.

Firewall Builder GUI

27

Figure 4.27. Added Outside Range 2 to Destination

4.5. Preferences Dialog
To open the Preferences dialog, select Edit/Preferences.... The dialog has several tabs, described here.

Figure 4.28. The GUI Preferences Dialog

Firewall Builder GUI

28

Table 4.9. Preferences>General Tab

General Preferences Explanation

Working Directory This option tells the program where it should store the data file. Policy
compilers also store firewall configuration files and scripts they produce
in this directory. If this parameter is left blank, the policy compiler stores
the firewall configurations it generates in the same directory as the origi-
nal data file.

Do not show tips on startup If checked, the program does not show tips on start up.

Check for updates automati-
cally

If checked, the program checks for program updates every time it starts.
If unchecked, the program will not chec k for updates unless specifically
enabled by clicking the Check Now button.

Check Now Click if you want the program to check for updates at that moment.

Use http proxy while check-
ing for updates (host:port)

Whether you use the automatic or manual method to check for updates,
if you are behind a proxy, enter the host IP and port of the proxy in this
field. Separate the host IP and port number with a colon (:).

Figure 4.29. GUI Preferences Objects Tab

Table 4.10. Preferences>Objects Tab

Objects Preferences Explanation

Enable object tooltips Firewall Builder can show a summary of an object's properties in a quick
pop-up window (a "tooltip") when you hover the mouse cursor over an
object icon. If this feature is not enabled, then you must click on an ob-
ject to get the same information. The Tooltip delay control sets the delay,
in seconds, between the time you hover the cursor and the time the tooltip
appears.

Firewall Builder GUI

29

Objects Preferences Explanation

Show deleted objects Selecting this checkbox turns on a third object tree: Deleted Objects.
Once enabled, the Deleted Objects tree acts like trash can (or recycle bin)
for deleted objects. If you delete something by mistake, you can retrieve
it.

Show object attributes in the
tree

Creates a second column in the object tree. The second column contains
information about the object, such as how many objects a folder contains,
whether a rule set is the top rule set , IP addresses, and so on. See Sec-
tion 4.3.3 for a description.

Clip comments in rules Comments in a rule can sometimes make the rule line taller, reducing the
number of rules visible on a screen. Select this if you want comments to
be truncated in the view if they take up more than one line.

DNS Name - Create new
objects in "Compile Time"
or "Run Time" mode by de-
fault

These radio buttons set the default behavior for reading DNS Name ob-
ject addresses from a file: when the firewall script is generated by Fire-
wall Builder or when the firewall runs the script. Note that the default
value set here can be overridden for individual objects. Section 5.2.16 has
more information on DNS Name object creation.

DNS Name - Use object
name for the DNS record in
all objects of this type

If checked, Firewall Builder uses the DNS Name object's name for DNS
lookups. If not checked, Firewall Builder uses the DNS Record field in
the object for lookups. (If this checkbox is checked, the DNS Record
field will be grayed out in all DNS Name objects.)

Address Table - Create new
objects in "Compile Time"
mode or "Run Time" mode
by default radio buttons

These radio buttons set the default behavior for reading Address Table
object addresses are read from a file: when the firewall script is gener-
ated by Firewall Builder or when the firewall runs the script. Note that
the default value set here can be overridden for individual objects. Sec-
tion 5.2.14 has more information on Address Table object creation.

Figure 4.30. GUI Preferences Data File tab

Firewall Builder GUI

30

Table 4.11. Preferences>Data File tab

Data File Preferences Explanation

Periodically save data to file
every ... minute

If checked, data is automatically saved at the specified interval.

Do not ask for the log record
when checking in the new
file version

Affects only RCS. If selected, the system does not prompt you for a
"comment" when you check your file back into RCS. See Section 7.7 for
a detailed explanation on using revision control with Firewall Builder.

Enable compression of the
data file

If selected, the data file is compressed to save disk space.

Figure 4.31. GUI Preferences Installer Tab

Table 4.12. Preferences>Installer Tab

Installer Preferences Explanation

SSH and SCP paths These fields specify the paths to your SSH and SCP programs, or their
equivalents. If these paths are already recorded in your PATH system
variable, you need not specify paths here. On Windows, however, you
must install putty. See Section 10.5.3 for instructions.

Enable password caching If checked, the program can remember firewall passwords for the du-
ration of the Firewall Builder GUI session. Passwords are never stored
permanently in any form; they are only kept in memory for the working
Firewall Builder GUI instance. You need to enter each password once
when you activate a generated policy. If you keep the program open and
need to modify and activate policy again, the password fields in the in-
staller dialog can be filled automatically. Cached passwords are associat-
ed with the firewall object and account name used to activate the policy.
To use this feature, you must also configure a user name in the Installer

Firewall Builder GUI

31

Installer Preferences Explanation

tab in the Firewall Settings dialog of the firewall object. Caution: using
this feature creates a risk if a working Firewall Builder GUI is left unat-
tended on an unlocked workstation.

Figure 4.32. GUI Preferences Labels Tab

Table 4.13. Preferences>Labels Tab

Labels Preferences Explanation

Labels You can assign colors to particular rows in your policies to make them
stand out visually. You can also change the text label associated with
each color using this tab. While the color shows up in the rule set, the
text label only appears in the label list.

Firewall Builder GUI

32

Figure 4.33. GUI Preferences Appearance Tab

Table 4.14. Preferences>Appearance Tab

Appearance Preferences Explanation

Rules, Tree, and Compiler
Output Panel Fonts

Use these controls to set the font used for rules, the object tree, and the
compiler output panel.

Show icons in rules If deselected, suppresses icon display for an object, showing only text.
By default, objects such as interfaces, hosts, and networks are displayed
as both an icon and text.

Show text descrip-
tions in columns
"Direction","Action"

If selected, displays text descriptions in addition to icons in the Direction
and Action columns. By default, only icons are shown.

Icon size By default, icons are 25x25 pixels. Select 16x16 to make them somewhat
smaller. (The larger icons are easier to see, but the smaller ones are useful
for smaller displays, such as laptop screens.)

Firewall Builder GUI

33

Figure 4.34. GUI Preferences Platforms and OS Tab

Table 4.15. Preferences>Platforms and OS Tab

Platforms and OS Prefer-
ences

Explanation

Lists of Platforms and OSs Checked platforms and OSs appear in drop-down menus of platforms and
OSs in the program. You can uncheck unneeded platforms and OSs to re-
duce clutter in GUI menus. Remember to recheck entries when you want
them to reappear in the GUI, such as when you acquire a new type of
firewall. Also, not all platforms and OSs supported by Firewall Builder
are checked by default. If the firewall you have doesn't appear in your
drop-down menus, make sure it is checked in this tab.

4.6. Working with Multiple Data Files
This section presents an example of how to work with two data files at the same time.

The example begins with one data file. The file name, "policy_rules.fwb", displays in the main window
title bar.

Firewall Builder GUI

34

Figure 4.35. Data File

Use File > Open to open the second data file.

Figure 4.36. Data File

The file "clusters.fwb" is now open in the GUI; its name displays in the title bar of the window.

Firewall Builder GUI

35

Figure 4.37. clusters.fwb

The Window menu supports standard window operations: you can maximize and minimize windows, as
well as cascade or tile them and switch from one to another.

Figure 4.38. Window Menu

Now both windows show. The size of the main windows is small to reduce the size of the screen shots; as
a result the two windows windows do not fit well. Even so, objects can be easily moved between windows
using copy and paste operations. In this example the firewall object "fw" will be copied from the top
window and pasted into "Firewalls" in the tree of the bottom window.

Firewall Builder GUI

36

Figure 4.39. Copy and Pasting between Windows

The following figure shows the window with the "clusters.fwb" data file maximized; note that firewall
object "fw" is part of the tree.

Figure 4.40. Object in Top Window

The firewall in the example, "fw", used a host object called "dmz-server" in the data file "policy_rules.fwb".
The system automatically copies "dmz-server" along with the "fw" object, as well as any other obect the
"fw" object depends on. The following figure shows that host "dmz-server" is now part of the "clusters.fwb"
data file.

Firewall Builder GUI

37

Figure 4.41. dmz-server

38

Chapter 5. Working with Objects

5.1. Types of Objects
Firewall Builder supports a variety of object types, both simple and complex. Simple object types include
Address, Network, Host, and IP, TCP, UDP and ICMP service objects. More complex object types are
Firewall, Address Table, DNS Name, and User Service.

There are the following types of objects in Firewall Builder:

• Addressable objects: Section 5.2 describes objects that have, either directly or indirectly, an address
of some kind. This category includes the physical objects (firewalls, hosts, interfaces) as well as some
logical objects (networks, address ranges, individual addresses). Addressable objects can be grouped
together into Object groups.

• Service objects: Section 5.3 describes objects that represent services. They include IP, TCP, UDP, and
ICMP services, as well as user services. Service objects can be grouped together into Service groups.

• Time Interval objects: Described in Section 5.4, these represent a discreet or recurring period of time.
They can be used as part of a rule in the firewall. For example, you could have a rule that matches on
weekends, but not during the week.

• Rule set objects: Described in Section 5.2.4, these represent the various rule sets in a firewall. By default,
a firewall starts with one access policy, one NAT, and one routing rule set, but you can add more of
each. Rule set objects only exist as child objects of a firewall.

All objects in Firewall Builder have some characteristics in common.

All objects have a Name field and a Comment field. The Name field can contain white spaces and can
be arbitrarily long (though shorter names work better in the GUI). The Comment field can contain any
text of any length.

5.2. Addressable Objects
This section describes object types that represent addresses or groups of addresses.

5.2.1. Common Properties of Addressable Objects

Objects that contain IP address fields provide validity checking for the address when the object is saved.
If the IP address is invalid, the system notifies you with an error.

5.2.2. The Firewall Object

A firewall object represents a real firewall device in your network. This firewall object will have interface
and IP address objects that mirror the real interfaces and IP addresses of the actual device. In addition, the
firewall object is where you create the access policy rule sets, NAT rule sets, and routing rule sets that
you assign to your firewall device.

By default, a firewall has one Policy rule set, one NAT rule set, and one routing rule set. However, you
can create more than one rule set of each type for a firewall. On the other hand, you don't have to populate
all the default rule sets. You can, for example, create a Policy rule set and leave the NAT and Routing rule
sets empty. Section 7.1 explains more about policies and rule sets.

Working with Objects

39

To speed up the creation of a firewall object, Firewall Builder has a wizard that walks you through creating
the object. The wizard has three options for creating a firewall object:

• From a template: Firewall Builder comes with several pre-defined templates. You can use these to create
a firewall that is close to your configuration, then modify it to fit your needs.

• Manually: You can provide interface IP address, subnet mask, gateway, and other parameters manually.
You can add this information when you create the firewall, or you can add it later. Section 5.2.2.1
(below) describes this process.

• Using SNMP: Firewall Builder uses SNMP queries to learn about the network. Section 5.2.2.3 describes
this process.

5.2.2.1. Creating a Firewall Object Manually

To start the firewall object creation wizard, right-click the Firewalls folder in the User tree and select New
Firewall.

The first page of the wizard displays.

Figure 5.1. First Page of the Wizard

Give the firewall object a name. Usually, this name is the same name you assigned to the device, but it need
not be if you're assigning interfaces manually. (If you are use SNMP or DNS to populate the interfaces,
then the name must be the same as the device name.) Then specify the firewall software and device OS.

Leave the Use pre-configured template firewall objects checkbox unchecked.

Click Next.

Working with Objects

40

Figure 5.2. Choosing to Configure Interfaces Manually

Select Configure interfaces manually and click Next.

Working with Objects

41

Figure 5.3. The Add Interfaces Page

This is the page where you can add interfaces to the firewall. In this page of the dialog, each interface is
represented by a tab in the tabbed widget. Use the "+" button in the upper left corner to add a new interface.
The "x" button in the upper right corner deletes an interface. Click the "+" button to create first interface
and give it the name "eth0":

Working with Objects

42

Figure 5.4. Adding Interfaces to the New Firewall Object

To add an IP address to the interface, click in the table cell in the "Address" column and begin typing the
address. The cell becomes an editable field that lets you enter the address. Add the network mask using the
table cell in the "Netmask" column. The "Type" drop-down list lets you choose between IPv4 and IPv6
addresses. The network mask field accepts both full numeric notation and bit length for IPv4 netmasks.
For IPv6, only bit length is allowed. The "Remove" button removes the address. You can add several
addresses to the same interface.

The following elements are available on this page of the wizard:

• Name: The name of the interface object in Firewall Builder must match exactly the name of the interface
of the firewall machine it represents. This will be something like "eth0", "eth1", "en0", "br0", and so on.

• Label: On most OSs this field is not used and serves the purpose of a descriptive label. On the Cisco
PIX, however, the label is mandatory, and must reflect the network topology. Firewall Builder GUI uses
the label, if it is not blank, to label interfaces in the tree. One of the suggested uses for this field is to
mark interfaces to reflect the network topology ("outside" or "inside", for example) or interface purpose
("web frontend" or "backup subnet", for example).

Working with Objects

43

• MAC: If you like, you can also specify the interface physical address. The MAC address is not necessary,
but it can be used to prevent spoofing. If the feature is turned on and available, the firewall only accepts
packets from the given IP address if the MAC address matches the one specified. Section 5.2.9.1 has
more information.

• Interface type: Indicates the type of interface. Section 5.2.5 explains the interface types in more detail.
Briefly, though, a Regular interface has a static IP addresses, a Dynamic address interface has a dynamic
address provided by something like DHCP, an Unnumbered interface never has an IP address (a PPPoE
connection, for example), and a Bridge port is an interface that is bridged in the firewall.

• Comment: free-form text field used for the comment.

• Address: If the interface has a static IP address, specify it here.

• Netmask: Use either a traditional netmask (255.255.255.0) or bit length (24, without slash) to specify
the interface netmask. For IPv6 addresses, only bit length notation is accepted.

Once all the interfaces are configured, click Finish to create the new firewall object.

Note

You can always add, modify, and delete interfaces later using controls provided in the main
window.

5.2.2.2. Creating a Firewall Object Using a Preconfigured Template

Another method you can use to create new firewall object is based on the use of preconfigured template
objects that come with the program. To do this, select the "Use preconfigured template firewall objects"
checkbox on the first page of the wizard Figure 5.1, then click Next.

Working with Objects

44

Figure 5.5. List of preconfigured firewall templates

The program comes with several template objects. These include firewalls with two or three interfaces, a
couple of firewall configurations intended for a server with one interface, templates for OpenWRT, DD-
WRT, and IPCOP firewalls, and a Cisco router. Each template is configured with IP addresses and basic
rules. Some templates assume all interfaces have static IP addresses, while other assume some interfaces
have dynamic addresses. These template objects are intended to be a start, something you can and should
edit and modify to match your network configuration and security policy.

Choose the template that is closest to your configuration and click Next.

Working with Objects

45

Figure 5.6. Editing Addresses of Interfaces of a New Firewall Created from a
Template

This page of the wizard allows you to change IP addresses used in the template. This is a new feature in
Release 4.0 relative to Release 3.0. You can add and remove addresses using the Add address and Remove
buttons. Since configuration of the template object depends on its interfaces, the dialog does not let you
add or remove interfaces for objects created from a template. Each interface is represented by a tab in the
tabbed widget; you can switch between them clicking the tabs with the interface names. Section 5.2.2.1
lists all elements of this page of the dialog and explains their purpose.

Each template firewall object comes preconfigured with some basic rules that use the firewall object,
its interfaces, and network objects that represent subnets attached to interfaces. If you change addresses
of interfaces in this page of the wizard, the program automatically finds all network objects used in the
template rules matching old addresses and replaces them with new network objects representing subnets
with addresses you entered in the wizard. This feature saves you from having to find and replace these
objects manually.

Working with Objects

46

Once all interfaces and addresses are entered or modified, click Finish to create the firewall object.

5.2.2.3. Creating a Firewall Object Using SNMP Discovery

If your firewall runs an SNMP daemon, you can save yourself some time by using SNMP discovery to
automatically create the interfaces of the new firewall object.

Figure 5.7. SNMP "read" Community String

Start by checking the Use SNMP to discover interfaces of the firewall checkbox on the second page of the
wizard and enter your SNMP "read" community. Then click Discover interfaces using SNMP.

Working with Objects

47

Figure 5.8. Discovering Interfaces via SNMP

The program runs a series of SNMP queries to the firewall to read the list of interfaces and their addresses.
Both IPv4 and IPv6 address can be imported. For IPv6, the firewall must support IP-MIB RFC 4293. Once
the discovery process finishes, click Next.

Working with Objects

48

Figure 5.9. Editing Interfaces Discovered Using SNMP

The next page of the wizard offers an opportunity to review the discovered interfaces and make adjust-
ments, if necessary. This is the same page described previously in Section 5.2.2.1. You can add and remove
interfaces and add, remove, or change their IP addresses. Section 5.2.2.1 lists all elements of this page of
the dialog and explains the purpose of each.

When configuration of all interfaces is correct, click Finish to create the new firewall object.

Working with Objects

49

5.2.2.4. Editing a Firewall Object

The firewall object represents the firewall machine and is the most complex object in Firewall Builder. It
has three sets of controls that you can modify, not including the policy rule sets. All these controls become
available when you double-click the firewall object in the tree.

Figure 5.10. Firewall Controls

5.2.2.4.1. Basic Firewall Controls

These controls let you specify the basic settings of the firewall, such as the name and firewall platform.

• Name: Specify or change the name of the firewall object.

• Platform: Specify or change the firewall software.

• Version: Specify or change the version number of the firewall software. In most cases, you can leave this
set to any. In general, setting the version to "any" means the compiler only supports options available
in all supported versions of the software. If you need a feature that is supported only by a particular
version, then specify that version.

• Host OS: Specify or change the host operating system of the firewall device.

• Firewall Settings: Opens the Advanced Settings dialog for the platform or firewall software. Click Help
in the dialog for assistance with dialog options. See Section 5.2.2.4.3 for a screen shot.

• Host OS Settings: Opens the Advanced Settings dialog for the indicated Host OS. Click Help in the
dialog for assistance with dialog options. See Section 5.2.2.4.2 for a screen shot.

• Inactive firewall: Check this box to make the firewall object inactive. The firewall name changes from
bold to a regular font to indicate that it is inactive, and the firewall is not available for compiling or
installation. Essentially, this is a way to "comment out" the firewall object without deleting it.

5.2.2.4.2. Host OS Settings Dialog

For explanations of the various controls, click the Help button in the dialog.

Working with Objects

50

Figure 5.11. Firewall Host OS Settings Dialog (Linux)

5.2.2.4.3. Firewall Settings Dialog

For explanations of the various controls, click the Help button in the dialog.

Working with Objects

51

Figure 5.12. Firewall Settings Dialog (iptables)

5.2.3. The Cluster Object

The cluster object represents an abstraction of a high availability (HA) setup that consists of two or more
member firewalls, each represented by its own firewall object.

The object type "cluster" (located under Clusters in the tree) represents the HA pair. You configure policy
and NAT rules in the rule sets of this object, rather than in those of the actual firewalls.

The procedure for setting up HA configuration is as follows:

• Create your firewall objects. Assign platform and host OS and name interfaces as usual. Do not add
any policy or NAT rules. These are your real (member) firewalls. Interfaces should have their real IP
addresses (not CARP or VRRP addresses).

Working with Objects

52

• Create a cluster object. Configure the cluster object with the proper platform and host OS. Use the usual
New Object menu or toolbar button to create this object. Note that in order for the firewall object to
become a member of a cluster, their platform and host OS settings must match.

There are two ways to create new cluster object: you can use main menu "Object / New Object" option
(or a toolbar button that calls the same function) as shown on Figure 5.13:

Figure 5.13. Create a New Cluster Using the "Object / New Object" Option

Using this menu option or toolbar button opens a wizard that guides you through the steps of creating
new cluster object. The first page of the wizard shows all the available firewall objects. In this page,
you choose which ones become cluster members:

Working with Objects

53

Figure 5.14. Using the Wizard to Choose Firewall Cluster Members

Another method is to select two or more firewall objects that are to become cluster members, then right-
click and select the "New cluster from selected firewalls" menu item, as shown on Figure 5.15. You
can select two or more objects in the tree by clicking the object while holding the "Ctrl" key ("Cmd"
on the Macintosh).

Working with Objects

54

Figure 5.15. Using the Right-Click Menu to Choose Firewall Cluster Menus

Using the right-click options launches the same wizard, but the list on its first page is already populated
with the selected firewall objects, as shown below.

Working with Objects

55

Figure 5.16. Wizard Populated with Selected Firewall Objects

Reducing the number of firewall objects displayed in the wizard can be helpful when you have many
of firewall objects defined in the object tree.

• The program guides you through the process of creating new cluster objects using a wizard-like dialog.
You start with the list of firewall objects where you choose which firewalls should become members of
the cluster. Next, the program finds interfaces of the member firewalls that have the same name and can
be part of the cluster and creates cluster interfaces with the same name. Not all interfaces are eligible:
for example, bridge ports, bonding interface slaves, and parents of VLAN interfaces cannot be used for
the cluster. Cluster interfaces define failover groups. You can add, remove, or rename cluster interfaces,
as well as change which interfaces of the member firewalls are used with each one. On the next page
of the wizard you can change failover protocols and add, remove, or change IP addresses of cluster
interfaces. Not all failover protocols require IP addresses: for example, VRRP or CARP do but heartbeat
or OpenAIS do not. Finally, you can choose to use policy and NAT rules of one of the member firewalls
to populate policy and NAT rule sets of the new cluster. If you do this, all references to the original
member firewall and its interfaces in rules are replaced with references to the cluster and its interfaces.
The program also creates backup copies of the member firewall objects with the name with suffix "-
bak" and clears policy and NAT rule sets of the member firewall objects used with the cluster before
the new cluster is created.

• OpenBSD or FreeBSD clusters are assigned with CARP interfaces. Name them "carp0", "carp1", and so
on (or whatever indexes the addresses are assigned on your machines). You can add the CARP password
and ID at the same time or you can add them later.

• If you use heartbeat or OpenAIS (on Linux) for failover, cluster interfaces should have the same names
as the corresponding member firewall interfaces. In this case, cluster interfaces are virtual entities that
represent interfaces of the corresponding member firewalls. The program makes the necessary substi-
tutions when it compiles the rules. This is also how PIX failover configuration works.

• Each cluster interface has a child "Failover group" object with the name "firewall:carp0:members", or
similar. This is the object where you configure associated member firewall interfaces. Double-click this
object in the tree and then click "Manage Members" button in the dialog. Select interfaces of the member

Working with Objects

56

firewalls in the panel on the left-and side and click the Arrow button to add them to the list on the right.
Use the checkbox to select the master. Click OK when done. The platform and host OS of the cluster
object and members must match, otherwise firewall objects do not appear in the "members" dialog panel.

• Besides interfaces, the Cluster object has a new child object "State Sync Group". This group represents
state synchronization protocol. Currently pfsync is supported for OpenBSD and conntrackd for Linux.
To configure, double-click this object in the tree to open it in the dialog and click "Manage Members".
Select the interfaces of the member firewalls in the panel on the left hand side and click the Arrow
button to add them to the list on the right. Use the checkbox to select the master. Click OK when done.
The new objects should appear in the "members" table in the State Sync Group dialog. The platform
and host OS of the cluster object and members must match, otherwise firewall objects do not appear
in the "members" dialog panel.

• The "Edit protocol parameters" button allows you to edit some parameters for the chosen failover pro-
tocol. This is how you configure an address and port for heartbeat and OpenAIS.

• There are few additional checkboxes in the "Script" tab of the firewall object dialog. These allow you
to control whether the program add shells commands for creating and configuring bonding, bridge, and
VLAN interfaces.

• Compile by right-clicking the cluster object and selecting "Compile". This compiles each member fire-
wall separately, resulting in .fw and .conf files for both of them.

• Again, you configure all the rules in the policy and NAT rule sets that belong to the cluster object. If
you put cluster's interfaces in rules, the program replaces them with interfaces of the member firewall
when it compiles rules. If you put cluster object in a rule, it is like if you put member firewall object
there instead, except the program automatically picks the member firewall it compiles the policy for.

• First, the program looks at Policy and NAT rule set objects of the cluster and member firewalls and
compares their names. If there is rule set object with the same name in both the cluster and member
firewall and both have non-zero number of rules, the rule set object from the member is used and the
one from the cluster is ignored. The program prints a warning message when this is done. If rule set
objects with the same name exist but the one in the member firewall has zero rules, it is ignored and the
one from the cluster is used (no warning is issued). Likewise, if there are rule sets with the same name
but the one in the cluster has zero rules, it is ignored.

• Here is what you need to do if you want to have most rules defined in the cluster so they will translate
into rules for all member firewalls, but have some rules defined in the members so you can make con-
figurations of the members slightly different:

• Create separate rule set object in the cluster and in each member. Use name different from "Policy"
or "NAT". Lets use name "member_override".

• Create a rule with action "Branch" in the main Policy or NAT rule set of the cluster, drag rule set object
"member_override" that belongs to the cluster to the well in the Branch action parameters dialog.

• Leave "member_override" rule set that is a child of the cluster object empty (no rules)

• Add rules to the rule set "member_override" in each member firewall

• Make sure rule set "member_override" is not marked as "Top ruleset" in the cluster and each member.
This rule set translates into user-defined chain (iptables) or anchor (PF) and should not be the "top
ruleset".

This method works for both policy and NAT rules for all platforms.

5.2.4. Editing Rule Set Objects

Firewalls and clusters can have one or more of the of the following types of rule sets: access policy, NAT,
and routing. A firewall has, by default, one access policy rule set, one NAT rule set, and one routing rule
set. However, you can add additional rule sets if you like.

Working with Objects

57

Rule sets are child objects of the a firewall object. They cannot stand alone.

As objects, rule sets have parameters. In Firewall Builder, rule sets have the following parameters:

• Name: The name of the rule set. If you only have one of each type of rule set, you can leave this at
its default.

• Rule set family: This pull-down menu lets you specify whether policy compiler should treat the rule
set as an IPv4 rule set, an IPv6 rule set, or a combined rule set. If set to IPv4, then only IPv4 rules are
processed and IPv6 rules are ignored. The opposite is true if you specify an IPv6 rule set. If you select
This is combined IPv4 and IPv6 rule set, then the compiler processes both types of rules and places
them into the appropriate places in the install script.

• filter+mangle table or mangle table: These radio buttons let you specify whether the rules apply to the
iptables filter table and mangle table, or just to the mangle table. (These radio buttons only appear for
access policy rule sets, and only for iptables.) Under most circumstances, the compiler places each rule
into the correct table (filter or mangle) automatically. However, some combinations of service objects
and actions are ambiguous and can be used in both filter and mangle tables. In cases like these, you
can clarify things for the compiler by creating a separate policy rule set to be translated only into the
mangle table.

• Top ruleset: One of your rule sets must be the "top" rule set. The top rule set is the one used by the
firewall. Other rule sets of that type are used only if you branch to them using branching logic in the
top rule set. (If you don't use branching, then only the rule set tagged as "top" is used.)

• Comment: A free-form comment field.

Figure 5.17. Rule set options

Working with Objects

58

5.2.5. Interface Object

Figure 5.18. Interface Object

Interface objects belong to firewall or host objects. Interface objects cannot exist alone.

The dialog for the interface object that belongs to the firewall or host provides controls for the parameters
described here. Controls that are only valid for the firewall, and not host objects, are marked as such.

Figure 5.19. Interface Object

• Name: The name of the interface object in Firewall Builder must match exactly the name of the interface
of the firewall machine it represents. This will be something like "eth0", "eth1", "en0", "br0", and so on.

• Label: On most OSs this field is not used and serves the purpose of a descriptive label. Firewall Builder
GUI uses a label, if it is not blank, to show interfaces in the tree. One of the suggested uses for this field

Working with Objects

59

is to mark interfaces to reflect the network topology (for example, "outside," "inside") or the purpose
("web frontend" or "backup subnet"). The label is mandatory for Cisco PIX though, where it must reflect
the network topology.

• Management interface: When a firewall has several network interfaces, one of them can be marked as
the "management interface". The management interface is used for all communication between Firewall
Builder and the firewall. For example, the built-in policy installer uses the address of the management
interface to connect to the firewall via SSH when it copies a generated script or configuration file. (This
object applies to firewall objects only.)

• External interface (insecure): Marks an interface that connects to the Internet, or to an area that is outside
the network protected by the firewall. (This obect applies to firewall objects only.)

• Unprotected interface: Marks interface to which Firewall Builder should not assign any access lists or
firewall rules. Unprotected interfaces are recognized by policy compilers for Cisco IOS access lists and
PF. Compiler for IOS ACL just skips unprotected interfaces and does not assign any ACL. The compiler
for PF generates a "set skip on" clause for unprotected interfaces. (This obect applies to firewall objects
only.)

• Regular Interface: Use this option if the interface has an IP address assigned to it manually (static IP
address).

• Address is assigned dynamically: Use this option if the interface has a dynamic address (obtained by
means of DHCP or PPP or another protocol). In this case, an address is unknown at the moment when
Firewall Builder generates the firewall policy. Some firewalls allow for using the interface name in
the policy instead of its IP address; the firewall engine then picks an address either when the policy is
activated or even at run-time. Some other firewalls support special syntax for rules that are supposed to
match packets headed to or from the firewall machine. Examples of these two cases are OpenBSD PF and
Netfilter. PF rules can be constructed using interface names; PF automatically uses the current interface
address when it loads rules into the memory. Netfilter supports special "chains" called "INPUT" and
"OUPUT" that are guaranteed to inspect only packets destined for the firewall machine ("INPUT") or
originated on it ("OUTPUT"). Both methods allow Firewall Builder to build correct firewall policy rules
that affect the interface with a dynamic IP address; however, the interface must be marked as such for
the policy compiler to use proper technique depending on the target firewall platform. In cases where
the rule has to use actual IP address of the interface (for example, anti-spoofing rules), the compiler
emulates this feature by adding a shell script fragment to determine the address at the time when firewall
script is executed and then uses the address in rules. Such emulation is only possible on platforms where
firewall configuration is in the form of the shell script; most notably, an iptables script on Linux.

• Unnumbered interface: Use this option if the interface can never have an IP address, such as the Ethernet
interface used to run PPPoE communication on some ADSL connections, or a tunnel endpoint interface.
Although an unnumbered interface does not have an address, firewall policy rules or access lists can
be associated with it.

• Bridge port: This option is used for a port of a bridged firewall. The compilers skip bridge ports when
they pick interfaces to attach policy and NAT rules to. For target firewall platforms that support bridg-
ing and require special configuration parameters to match bridged packets, compilers use this attribute
to generate a proper configuration. For example, in case of iptables, the compiler uses -m physdev --
physdev-in or -m physdev --physdev-out for bridge port interfaces. (This obect applies to firewall objects
only.)

• Security level: Depending on the firewall platform, the security level is either External/Internal or a
numeric value between 0 and 100, with 0 being least secure and 100 being most secure. This field in
the GUI dialog automatically shows controls appropriate to the current firewall. Not all firewall support
the concept of a security zone. (This obect applies to firewall objects only.)

Working with Objects

60

• Network zone: Used only with Cisco PIX (ASA). The Network zone drop-down list shows all network
objects and groups of addresses and networks present in the tree. Choose one of them to tell the compiler
which networks and blocks of addresses can be reached through this interface. Usually the external
interface (the one that connects your firewall to the Internet) has the Network Zone set to Any. It is also
recommended that you create a group of objects to represent Network Zones for all other interfaces
on the firewall. The compiler uses this information to decide which interface each ACL rule should be
associated with based on the addresses used in the destination of the rule. (This obect applies to firewall
objects only.)

5.2.5.1. More about Security Levels and Network Zones

Consider the network layout as in Figure 5.20.

Figure 5.20. Choosing Network Zones

In this example, the firewall has three interfaces: "outside," "dmz," and "inside." Behind the firewall, there
is a router which in turn is connected to three subnets: "subnet A," "subnet B," and "subnet C." Subnet A
is shared between the router and the firewall (each device has an interface on this subnet). Let's suppose
we have created Network objects for each subnet and called them "subnet DMZ," "subnet A," "subnet B"
and "subnet C." (Recall that spaces are allowed in object names.) For this set-up, network zones should
be configured as follows:

Interface Network Zone

outside ANY

dmz subnet DMZ

Working with Objects

61

Interface Network Zone

inside subnet A, subnet B, subnet C

Since the network zone for the "inside" interface consists of multiple objects, you must create a group so
that you can use this group as a Network Zone object.

Table 5.1 explains the differences in the way firewall platforms interpret values in the Security Level and
Network Zone parameters of the firewall interfaces.

Table 5.1. Platform-Specific Interface Parameters

Firewall Platform Security Level Values Network Zone

iptables two values: "External" or "Inter-
nal"

N/A

ipfilter two values: "External" or "Inter-
nal"

N/A

pf two values: "External" or "Inter-
nal"

N/A

Cisco PIX numeric, 0 - 100 a reference to a group or network
object

Note that the "external" interface option may be deprecated in the future versions of the program.

In PIX, access lists must always be attached to interfaces. The policy compiler for PIX uses information
about the network zones of interfaces to decide which interface a rule should be associated with if its
"Interface" column does not specify one (is left set to "All"). Instead of placing this rule in access lists
attached to all interfaces, it compares addresses in the Source and Destination of the rule with network
zones of interfaces and only uses interfaces that match. This helps generate a PIX configuration that is
more compact.

5.2.5.2. Using Interface Objects in Rules

Policy rules in Firewall Builder have a rule element called Interface. You can drag-and-drop, or copy/paste
interface object into this column of a rule to make the firewall match not only the source and destination
address and service, but also the interface of the firewall through which packets enter or exit. The direction
of the packet is defined in column Direction. Consider the following example:

Figure 5.21. Rule Using an Interface Object

Rule #0 is "anti-spoofing" rule which relies on the ability to define interface and direction. It matches
packets with source addresses equal to the addresses of the firewall's interfaces or internal network, but that
are coming in from outside, which is determined by comparing the interface through which packets enter
the firewall. Packets with "internal" addresses cannot normally come from outside, and if they do, they

Working with Objects

62

must be spoofed and should be dropped. This is what this rule does: it drops and logs these packets. Rule
#1 permits connections originating from the internal network going out, but it makes sure these packets
enter the firewall through its internal interface.

These two rules generate the following iptables script:

Rule 0 (eth0)

$IPTABLES -N In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 192.0.2.1 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 172.16.22.1 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 192.168.2.1 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 172.16.22.0/24 -j In_RULE_0
$IPTABLES -A In_RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A In_RULE_0 -j DROP

Rule 1 (eth1)

$IPTABLES -A FORWARD -i eth1 -s 172.16.22.0/24 -m state --state NEW -j ACCEPT

Here all iptables commands have an "-i eth0" or "-i eth1" clause, which makes iptables compare the in-
terface and direction.

Here is what we get if we compile the same rules for PF:

Tables: (1)
table <tbl.r9999.d> { 192.0.2.1 , 172.16.22.1 , 192.168.2.1 }

Rule 0 (eth0)

block in log quick on en0 inet from <tbl.r9999.d> to any
block in log quick on en0 inet from 172.16.22.0/24 to any

Rule 1 (eth1)

pass in quick on en1 inet from 172.16.22.0/24 to any keep state

For PF, the compiler generated a "block in log quick on eth0" clause to make the rule match interface
and direction.

In the case of Cisco IOS access lists, defining an interface in the rule makes the compiler place code
generated for this rule into the ACL attached to the given interface. The compiler for IOS ACL always
generates both inbound and outbound access lists for each interface, but if the rule specifies both interface
and direction ("Inbound" or "Outbound"), the generated configuration goes only into the corresponding
access list. Here is the output produced for the rules shown above for Cisco IOS ACL:

Working with Objects

63

ip access-list extended inside_in
! Rule 1 (eth1)
!
 permit ip 172.16.22.0 0.0.0.255 any
exit

ip access-list extended outside_in
! Rule 0 (eth0)
!
 deny ip host 192.0.2.1 any log
 deny ip host 192.168.2.1 any log
 deny ip 172.16.22.0 0.0.0.255 any log
exit

interface FastEthernet1
 ip access-group inside_in in
exit
interface FastEthernet0
 ip access-group outside_in in
exit

So far, the examples in this section have demonstrated how to use Interface objects to associate policy
rules with interfaces so as to match packets crossing certain interface. An interface object can be used in
the "source" and "destination" of rules just like any other addressable object. In this case, Firewall Builder
replaces the interface object with the set of its addresses, picking only those addresses that match the
address family (IPv4 or IPv6 or both) assigned to the rule set.

For example, we start with a firewall configuration where interface eth1 has two IP addresses, one IPv4
and another is IPv6. Note that this could be a host object as well because interfaces can belong either to
a Firewall or a Host object.

Figure 5.22. Interface Object with Both Address Families

Interface eth1 has IPv4 address 172.16.22.1 and IPv6 address fe80::21d:9ff:fe8b:8e94. It is used in a simple
policy rule as follows:

Figure 5.23. Interface Object in a Rule

This policy rule set is configured as a mixed IPv4+IPv6 rule set. For iptables, the compiler generates the
following code:

Working with Objects

64

================ IPv4
Rule 0 (global)

$IPTABLES -A INPUT -p tcp -m tcp -d 172.16.22.1 --dport 22 -m state \
 --state NEW -j ACCEPT

================ IPv6

Rule 1 (global)

$IP6TABLES -A INPUT -p tcp -m tcp -d fe80::21d:9ff:fe8b:8e94 --dport 22 \
 -m state --state NEW -j ACCEPT

For PF we get the following:

Rule 0 (global)

pass in quick inet proto tcp from any to 172.16.22.1 port 22 keep state
pass out quick inet proto tcp from any to 172.16.22.1 port 22 keep state

Rule 0 (global)

pass in quick inet6 proto tcp from any to fe80::21d:9ff:fe8b:8e94 port 22 \
keep state
pass out quick inet6 proto tcp from any to fe80::21d:9ff:fe8b:8e94 port 22 \
keep state

Since the interface has two addresses, one IPv4 and another IPv6, the compiler generates commands in
both the IPv4 and IPv6 sections of the script, but it uses only the appropriate address in each. Other than
that, the interface object behaves just like a set of addresses when used in the source or destination element
of a rule. It can also be used in NAT rules. Here is an example:

Figure 5.24. IPv4 Address Object Assigned to an Interface

This generates the following code for iptables:

Rule 0 (NAT)

$IPTABLES -t nat -A POSTROUTING -o eth0 -s 172.16.22.0/24 -j SNAT \
--to-source 192.0.2.1

Rule 1 (NAT)

$IPTABLES -t nat -A PREROUTING -p tcp -m tcp -d 192.0.2.1 --dport 80 \
-j DNAT --to-destination 172.16.22.100

And for PF:

Working with Objects

65

Rule 0 (NAT)

nat on eth0 proto {tcp udp icmp} from 172.16.22.0/24 to any -> 192.0.2.1

Rule 1 (NAT)

rdr on eth0 proto tcp from any to 192.0.2.1 port 80 -> 172.16.22.100 port 80

5.2.5.3. Using Interface Object with Dynamic Address in Rules

The examples above demonstrated what happens when an interface with one or several IP addresses is used
in policy and NAT rules. Let's look at the case when an interface has an address assigned dynamically. This
means the address is unknown to the Firewall Builder policy compiler when it generates the configuration
script. The compiler uses features of the target firewall to work around this. Here is the configuration of
the interface object eth0. The radio-button Address is assigned dynamically is selected.

Figure 5.25. Interface with Dynamic Address

The following policy rule uses interface eth0 in destination:

Figure 5.26. Interface with Dynamic Address in a Rule

Here is the result for iptables:

Working with Objects

66

getaddr eth0 i_eth0
getaddr6 eth0 i_eth0_v6

================ IPv4

Rule 0 (global)

test -n "$i_eth0" && $IPTABLES -A INPUT -p tcp -m tcp -d $i_eth0 --dport 22 \
 -m state --state NEW -j ACCEPT

================ IPv6

Rule 0 (global)

test -n "$i_eth0_v6" && $IP6TABLES -A INPUT -p tcp -m tcp -d $i_eth0_v6 \
 --dport 22 -m state --state NEW -j ACCEPT

The shell functions "getaddr" and "getaddr6" are defined earlier in the script. The generated script deter-
mines IPv4 and IPv6 addresses of interface eth0 at the time of execution and then uses the values in iptables
commands. If the interface does not have an address, the corresponding variable gets an empty string for
its value and the iptables command using it is skipped.

PF allows for using interface name in rules and gets its current IP address automatically. This is the result
generated for PF:

Rule 0 (global)

pass in quick inet proto tcp from any to (en0) port 22 keep state
pass out quick inet proto tcp from any to (en0) port 22 keep state

Rule 0 (global)

pass in quick inet6 proto tcp from any to (en0) port 22 keep state
pass out quick inet6 proto tcp from any to (en0) port 22 keep state

We still get two separate parts for IPv4 and IPv6 because the rule set is configured as IPv4+IPv6 mix,
but in both cases compiler just used the interface name because its actual IP address is dynamic and was
unknown at the time the configuration was generated.

5.2.5.4. Using Interface Object in Rules of Bridging iptables Firewall

In case of the "normal" iptables firewall, Firewall Builder adds an "-i eth0" or "-o eth0" parameter to
the generated iptables command to make it match interface and direction. If radio button "Bridge port"
is turned on in the interface object, the compiler uses a different option to make iptables match packets
crossing bridge ports. Here is the interface "eth1" which is configured as a bridge port:

Working with Objects

67

Figure 5.27. Bridge Interface

Consider the following rule in the policy of the firewall this interface belongs to:

Figure 5.28. Bridge Interface in Rule

This rule matches interface "eth1" and generates the following iptables command:

$IPTABLES -A FORWARD -m physdev --physdev-in eth1 -s 172.16.22.0/24 \
 -d 172.16.22.255 -m state --state NEW -j ACCEPT

Since the interface is now a bridge port, the compiler uses "-m physdev --physdev-in eth1" to match it.

5.2.6. IPv4 Address Object

The regular address object describes single a IPv4 address. It can be a child of an interface object, in which
case it represents an IP address and netmask of the interface, or it can be used as a standalone object. In the
latter case it does not have a netmask and is located in the Objects/Addresses branch of the objects tree.

5.2.6.1. IPv4 Address Object When Used as an Address of an Inter-
face

In this case the object is a "child" or "leaf" under the an interface object, either on a host or a firewall
object. To create this kind of an address, right-click the interface object to bring up the context menu.

Working with Objects

68

Figure 5.29. IPv4 Address Object Assigned to an Interface

Its dialog provides the following entry fields:

• Name

This is the name of the object. Use a descriptive name because when the address object is used in the
firewall policy, it is labeled with this name. It may be hard to tell one address from another if their
names are similar.

• Address

This is an IP address. The GUI widget provides syntax control for the values entered in the field. (This
syntax control activates when you save the object.)

Note

A typical error is to interpret this object as an address of the subnet to which the interface of
the host or firewall belongs. This object represents an address of the interface, not a network
address. (So, 192.168.1.1, not 192.168.1.0)

• Netmask

This is a netmask assigned to the interface. You can enter the netmask using the traditional method
(255.255.255.0) or using network bit length notation ("24"). Bit length notation is converted to a tradi-
tional netmask by Firewall Builder.

• DNS Lookup

If the host object has the same name as the actual machine, then clicking this button generates a DNS
query that populates the interface IP address and subnet. Only the parent host or firewall object's name
is used for the DNS query; the name of the interface is ignored and can be anything.

• Comment

This is free-form text field for a comment.

Here we use our IPv4 address in a rule (remember, it belongs to the interface):

Figure 5.30. IPv4 Address Object Assigned to an Interface and Used in a Rule

Firewall Builder's iptables compiler, for example, generates the following command from this rule:

Working with Objects

69

$IPTABLES -A INPUT -p tcp -m tcp -d 172.16.22.1 --dport 22 -m state \
 --state NEW -j ACCEPT

Note how even though the address object has a netmask, the generated command matches the address as
a host address, not as a subnet. This is because the netmask is used only to describe the subnet for the
interface, not to describe the subnet. When this address object is used in a rule, it is understood that the
intention is to match the address of the interface it belongs to rather than any address on the subnet. Use
the network object if you need to match a whole subnet.

This iptables rule was placed in the INPUT chain because the object in the "Destination" was an address of
an interface of the firewall. While processing the policy for the iptables target firewall platform, Firewall
Builder compares addresses in the source and destination of a rule to the addresses of all interfaces of the
firewall to find rules that control access to and from the firewall. Firewall Builder places these rules into
INPUT or OUTPUT chains. This is only necessary for iptables.

5.2.6.2. IPv4 Address Object When Used as a Stand-Alone Object

In this case the object is located in the Objects / Addresses part of the objects tree and does not have a
netmask entry field. To create this kind of an address, use the New Object menu to select New Address or
use the right-click menu associated with the addresses folder in the tree.

Figure 5.31. Stand-Alone IPv4 Address Object

Dialog fields Name, Address and Comment have the same purpose and properties as an address object
assigned to an interface object.

The DNS Lookup button can be used to automatically populate the address field using a DNS query. The
program runs DNS query for the "A" record with the name of the address object. The object name does
not have to match any DNS record if you never plan to use this feature. DNS query function is just a
convenience, but to use it, the name of the object must match a DNS record.

5.2.7. IPv6 Address Object

The IPv6 address object is similar to the IPv4 address object. Like IPv4 address objects, it can be used
both as a child of an interface object or as a stand-alone object.

Working with Objects

70

5.2.7.1. IPv6 Address Object When Used as an Address of an Inter-
face

Figure 5.32. IPv6 Address Object Assigned to an Interface Object

If it is used to describe an IPv6 address of an interface, it has a netmask represented as bit length. Unlike
with IPv4 address object, an IPv6 netmask is never represented as a colon-separated string of octets.

5.2.7.2. IPv6 Address Object When Used as Stand-Alone Object

Figure 5.33. Stand-Alone IPv6 Address Object

In this case this object is located in the Objects / Addresses part of the objects tree (the same place where
stand-alone IPv4 addresses are located) and does not have a netmask entry field. To create this kind of
an address, use the New Object menu item New Address IPv6 or the right-click menu associated with the
addresses folder in the tree.

Policy compilers treat IPv6 addresses in policy rules according to the same algorithms as those for IPv4
rules. For example, just like with IPv4, the compiler for iptables checks whether an address matches an
address of any interface of the firewall to determine if the rule should be placed in the INPUT or OUTPUT
chain.

Consider the rule shown in the screenshot below where we use two IPv6 address objects. One object
belongs to the interface inside of the firewall while another is the IPv6 address of the project's web site.

Working with Objects

71

Figure 5.34. IPv6 Address Objects in a Rule

For iptables, Firewall Builder generates the following commands from this rule:

$IP6TABLES -A INPUT -p tcp -m tcp -d fe80::21d:9ff:fe8b:8e94 --dport 80 \
-m state --state NEW -j ACCEPT
$IP6TABLES -A FORWARD -p tcp -m tcp -d 2001:470:1f0e:162::2 --dport 80 \
-m state --state NEW -j ACCEPT

The rule that matches the address described by object guardian-2:eth1:ipv6 went to the INPUT chain be-
cause compiler detected that this rule matches packets that are headed for the firewall itself, which iptables
inspects in the INPUT chain. The rule that matches the address described by the object ipv6.fwbuilder.org
went to the FORWARD chain because these packets go through the firewall.

5.2.8. Attached Network Objects
There is a special type of interface child object, called the Attached Network object, that represents the
networks that are directly attached to the interface. Figure 5.35 shows an example firewall configuration
for a firewall with two network interfaces.

Figure 5.35. Example Firewall Configuration

In the example configuration one of the interfaces, eth0, has one IP address and the other interface, eth1,
has two IP addresses as shown in Table 5.2.

Table 5.2. Attached Networks

Interface Attached Network

eth0 192.0.2.0/24

eth1 10.10.10.0/24

Working with Objects

72

Interface Attached Network

eth1 172.16.0.0/24

To create an object that matches the attached networks, select an interface, right-click on the interface and
select New Attached Network from the context menu as shown in Figure 5.36.

Figure 5.36. Adding Attached Network Object to Interface eth1

This will create a new child object under the eth1 interface object called linux-1:eth1:attached.

Figure 5.37. Adding Attached Network Object to Interface eth1

If you open the object for editing as shown in Figure 5.38 you will see the list of all networks that are
currently attached to the eth1 interface. If you add or delete IP addresses from the interface the Attached
Network object will be automatically updated.

Figure 5.38. Adding Attached Network Object to Interface eth1

The Attached Network object can than be used in rules just like any other Network object. Figure 5.39
shows an example of using the Attached Network object from the eth1 interface in a NAT policy rule.

Working with Objects

73

Figure 5.39. Adding Attached Network Object to Interface eth1

Compiling this rule for an iptables firewall results in the output shown below.

echo "Rule 0 (NAT)"

$IPTABLES -t nat -A POSTROUTING -o eth0 -s 10.10.10.0/24 -j SNAT --to-source 192.0.2.1
$IPTABLES -t nat -A POSTROUTING -o eth0 -s 172.16.0.0/24 -j SNAT --to-source 192.0.2.1

Note

You can also use the Attached Network object with interfaces that are configured as "Address is
assigned dynamically". In this case the script generated by Fireawll Builder will determine the
attached network based on the IP address that is assinged to the interface at the time that the
script is run.

Attached Networks - Cisco ASA/PIX

The Attached Network object on Cisco ASA/PIX firewalls works the same way as it does for iptables
firewalls where the Attached Network object will be expanded to include all networks that are associated
with the IP address(es) assigned to the interface.

Attached Networks - PF

On PF firewalls the Attached Networks object translates into the "<interface>:network" configuration
parameter. For example, if you create an Attached Network object on interface em0, and use that Attached
Network object in a rule, the generated configuration will use the em0:network parameter in the generated
configuration.

5.2.9. Physical Address Objects

Figure 5.40. The Physical Address Object

The physical address object describes the hardware, or media, address of an interface. Currently only
Ethernet MAC addresses are supported, but support for other kinds of physical addresses may be added
in the future.

Working with Objects

74

The physical address object can only be a child of an interface; it cannot exist as a stand-alone object.
To create this kind of address object, right-click an interface object in the tree, then select Add MAC
Address. Only one physical address object is allowed per interface; the program enforces this restriction.
If you create a firewall or host object using SNMP discovery, all interfaces are automatically populated
with their MAC addresses.

• Name

This is the name of the object. The field is populated automatically with a host:interface:addressType
descriptive name when the object is created, but you can change it immediately or later. If you change
the name, use something descriptive because when the address object is used in the firewall policy, it is
labeled with this name. It may be hard to tell one address from another if their names are similar.

• Address

This is a string representation of the physical or media address. For many types of media, this will be in
a binary representation. For example, an Ethernet address would be represented as a string of six octets.

• Comment

This is free-form text field for a comment.

5.2.9.1. Using The Physical Address Object in Policy Rules

Only a few firewall platforms really support physical address filtering. Currently, Netfilter/iptables is the
only firewall platform supported by Firewall Builder that can do physical address filtering.

As described in Section 5.2.10.4, if an interface object that has multiple child address objects is used in
a rule element (either Source or Destination), then the policy compiler tries to generate a rule using all
of them. Section 5.2.10.4 explains that the compiler actually does this by generating multiple rules using
each address in turn. This roughly corresponds to using the logical operation "OR" on the IP addresses:
if our interface has two addresses, Address1 and Address2, then the generated rule matches if the address
in the packet is either Address1 OR Address2. The case of a physical address is different, though. If the
interface has a physical address, then the compiler builds a rule that has to match an IP address and the
MAC address. The reason is to combat IP spoofing.

Suppose we have a very important host on the network. We create a host object, then add an interface to
it. The interface should have both address and physical address objects as shown in Figure 5.41. The two
child objects are visible in the tree under the Interface "eth0".

Figure 5.41. The Host Object with Address and Physical Address

Working with Objects

75

Note

Note how MAC matching is checked in the host object dialog. This makes the compiler use the
MAC addresses of the interfaces of this host.

Because this is a very important host, we would like to be sure that packets whose source IP is that of
this host are really coming from it and are not spoofed. The best way to achieve this goal is to use strong
authentication, for example, using the IPSec protocol. The use of IPSec is outside the scope of this docu-
ment, since our goal here is to show that inspecting the MAC address of the packet can improve security.

Both a real packet originated from this host and a spoofed packet have a source IP address of the interface of
this host, but the source MAC address is going to be different if spoofing is occurring. We can use this fact
to catch and drop spoofed packets. Here are three possible ways to build security policy for this situation:

• Using only address object in the rule element. This means the firewall inspects only IP address and
ignores the MAC address of the packets.

Figure 5.42. Policy Rule Using Only Address Object

Firewall Builder generates the following simple iptables command for this rule:

$IPTABLES -A FORWARD -s 10.3.14.44 -m state --state NEW -j ACCEPT

• Using only a physical Address object. A rule built this way permits all kinds of traffic coming from the
trusted host even if its IP address changes.

Figure 5.43. Policy Rule Using Only a Physical Address Object

For this rule, the following iptables command is generated:

$IPTABLES -A FORWARD -m mac --mac-source 00:1D:09:8B:8E:94 -m state --state NEW \
-j ACCEPT

• Using a host or interface object. This way we end up with a rule that matches on a combination of the
IP address and MAC address. This may be used as a sophisticated anti-spoofing rule.

Figure 5.44. Policy Rule Using a Host Object

Figure 5.45. Policy Rule Using an Interface Object

For this rule, the following iptables command is generated:

Working with Objects

76

$IPTABLES -A FORWARD -m mac --mac-source 00:1D:09:8B:8E:94 -s 10.3.14.44 -m state \
--state NEW -j ACCEPT

Using address and physical address objects in a rule is not the same as using the host or interface object
to which these address and physical address belong. Here is what happens if we put objects representing
IP address and MAC address in the rule:

Figure 5.46. Policy Rule Using Address and Physical Address Objects

For this rule, the following iptables commands are generated:

$IPTABLES -A FORWARD -s 10.3.14.44 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -m mac --mac-source 00:1D:09:8B:8E:94 -m state --state NEW \
-j ACCEPT

As described in Section 5.2.10.4, using an multiple objects in the rule element is like bundling them to-
gether using logical operation OR. If we were to put address and physical address in the rule as in Fig-
ure 5.46, we would end up with a policy matching packets that have the source address 10.3.14.44 or
MAC address 00:1D:09:8B:8E:94, but not necessarily both at the same time. Any host that manages to
pretend to have the IP address 10.3.14.44 would be able to send packets through our firewall even if its
MAC address is different. To achieve our goal and make sure packets with the source 10.3.14.44 really
belong to our important host, we should be checking its IP address and MAC address at the same time
and let a packet through only if its IP address AND MAC address are what we expect them to be. That is
why Firewall Builder treats physical addresses differently and generates firewall code that inspects both
IP address and physical address.

Firewall Builder generates firewall code to inspect MAC address only for host objects with the option
MAC address filtering turned on. If this option is off, the physical address object is ignored even if it is
present in the host object's interface. This is because host objects created using the Network Discovery
Druid (Section 6.2) are often populated with both IP address and MAC address information (available
through SNMP query), but inspection of MAC addresses is rarely needed. Use the MAC address filtering
option in the host object to specify that you want the MAC address to be verified for the host.

Note

The target firewall imposes certain restrictions on rules matching the MAC address. For example,
only source MAC addresses can be matched. Firewall Builder is aware of these restrictions, and
the policy compiler issues an error if a physical address object is used in a rule that would lead
to an impossible iptables command.

5.2.10. Host Object
The host object in Firewall Builder is designed to represent real hosts in the network: workstations, servers,
and any other network node with an address. Just like real hosts, host objects have interfaces that represent
different physical connections to the network.

Most hosts have just a single (visible) interface with a single IP address. In that case the actual interface
and its name do not matter. For most foreign hosts, Firewall Builder assigns an arbitrary name, like “inter-

Working with Objects

77

face1”, to the host's interface. However, by using the tree-like hierarchy of hosts -> interfaces -> addresses,
it is possible to specify the exact address and/or interface of a host in cases where it does matter.

As in the Firewall object, interfaces and addresses are represented by objects that are organized in a tree.
An interface can have multiple addresses. An example of a host with one interface and multiple addresses
is shown in Figure 5.47. Host “test server” is located on the LAN and has three virtual IP addresses that
all belong to the same interface, “eth0”.

Note that in Firewall Builder, the host object is an abstraction. It does not have to conform to an individual
host. This host object may in fact represent a web farm that accepts connections on three IP addresses,
each on a different computer.

Figure 5.47. A Host Object with One Interface and Multiple Virtual Addresses

Note

The host object cannot have any access, NAT, or routing policy associated with it; only firewall
objects can have policies.

5.2.10.1. Creating a Host Object

To speed up the process and make it simpler, creating a new host object is aided by a wizard that is similar
to the one for creating a new Firewall Objects.

To launch the wizard, select New Host from the New Object menu or right-click Hosts and select it from
there.

Section 5.2.2 shows how to use the firewall object wizard. The host object wizard is the same, with the
following exceptions:

• All methods

You do not specify the operating system or platform for host objects.
• From template

The Host object templates are different than those for Firewall objects. Browse through the list in Fire-
wall Builder to see what's available.

• Manually

Working with Objects

78

This method works the same as for the Firewall object, though the Add Interfaces page is slightly dif-
ferent. You cannot tag an interface as a "bridge port" interface. You can, however, indicate it is unnum-
bered or dynamic by selecting the appropriate checkbox. If neither checkbox is selected, then the inter-
face is assumed to have a static IP address. As with the firewall object wizard, you can only add IPv4
addresses in this way. If you need to use IPv6 addresses, create the host object without IP addresses
and add them later.

• Via SNMP

This method works the same as for a Firewall object. The host object must have the same name as the
actual device and the host must respond to SNMP.

Note

You can always add, modify, and remove interfaces of the new host object later using controls
provided in the main window and object tree view.

5.2.10.2. Editing a Host Object

Figure 5.48. Editing the Host Object

The Host object dialog allows you to edit the following parameters:

• Name:

The host object name.
• MAC matching:

If this option is activated, the policy compiler uses the MAC addresses of all interfaces of this host in
the firewall rules. Not all firewall platforms support MAC address filtering, so this option may have no
effect on the generated firewall script. This is treated as a non-critical situation, and the policy compiler
will only generate a warning while processing a firewall policy where such a host is used. You cannot
enter the physical (MAC) address in this dialog, however. See Section 5.2.9.1.

• Comment:

This is a free-form text field which can be used to add comments.

5.2.10.3. Using a Host Object in Rules

When a host object is used in a rule, it acts as a group of all of the addresses that belong to all of its
interfaces. The only exception is the loopback interface; the compiler skips that address when replacing
the host object with its addresses.

Working with Objects

79

Consider the following Host object. It has interface eth0 with two IP addresses and a MAC address, inter-
face he-ipv6 with an IPv6 address and a MAC address, interface lo (loopback) with its own IP address
and interface sit0 (tunnel) with no address.

Figure 5.49. Host with multiple interfaces, Some with Multiple Addresses

Let's put this host object in a rule as follows:

Figure 5.50. Host in a Rule

Working with Objects

80

The rule set is configured as "IPv4 only", so even though interface he-ipv6 has IPv6 address, Firewall
Builder will ignore it while generating iptables commands for this rule. Interface eth0 has two IPv4 ad-
dresses and both will be used. Here are iptables commands generated for this rule:

$IPTABLES -A FORWARD -p tcp -m tcp --dport 22 -m state --state NEW \
-j Cid6066X5981.1
$IPTABLES -A Cid6066X5981.1 -d 10.3.14.44 -j ACCEPT
$IPTABLES -A Cid6066X5981.1 -d 10.3.14.55 -j ACCEPT
$IPTABLES -A Cid6066X5981.1 -d -j ACCEPT

Let's see what we get for the same rule if we configure rule set object as "IPv4+IPv6":

Figure 5.51. Host in a Rule with both IPv4 and IPv6

Since the rule is now configured to compile for both address families, Firewall Builder processes it twice,
once for each address family. Here is what we get (these are relevant fragments of the generated script):

================ IPv4

$IPTABLES -A FORWARD -p tcp -m tcp --dport 22 -m state --state NEW \
-j Cid6066X5981.1
$IPTABLES -A Cid6066X5981.1 -d 10.3.14.44 -j ACCEPT
$IPTABLES -A Cid6066X5981.1 -d 10.3.14.55 -j ACCEPT
$IPTABLES -A Cid6066X5981.1 -d -j ACCEPT

================ IPv6

$IP6TABLES -A FORWARD -p tcp -m tcp --dport 22 -m state --state NEW \
-j Cid6066X5981.1
$IP6TABLES -A Cid6066X5981.1 -d fe80::a3:e2c -j ACCEPT

Working with Objects

81

5.2.10.4. Using Objects With Multiple Addresses in the Policy and
NAT Rules

Host and firewall objects have child interface objects, which in turn have child address and physical address
objects. In fact, an interface object can have more than one associated address object. Let's see how this
works:

Figure 5.52. Host Object with an Interface with Multiple Addresses

Figure 5.53. Using Objects with Multiple Addresses in Policy Rules

Consider example Figure 5.52, Figure 5.53. Here interface eth0 of "test server" has three IP addresses
(named "test server:eth0:0" through "test server:eth0:2") and interface eth0 of "dmz host" has only one IP
address: "dmz host:eth0". Policy rule #9 says that "dmz host" can talk to "test server" using any protocol.
Since "test server" has three different addresses, we need to generate policy a rule that will match any of
them. (Obviously we cannot match all three at once, so the compiler uses a logical "OR", not a logical
"AND" here.) Basically, rule #9 is equivalent to three separate rules, each of them using one address of
"test server" in turn. These three rules are represented in Figure 5.54 (original rule #9 also shown there,
but it is disabled.)

Figure 5.54. Equivalent Rules

Firewall Builder takes care of this situation automatically and generates the firewall policy described in
Figure 5.53 as if a user had built a policy in the GUI using the three rules as shown in Figure 5.54.

In fact, the algorithm used is even more general. In the example Figure 5.53, host "test server" has a single
interface with multiple addresses that the compiler used to generate the target firewall code. The policy
compiler works in a similar way even if the host or firewall object used in the rule has multiple interfaces
and each interface, in turn, has multiple addresses. If a host (or firewall) object is used in the rule, then the
compiler scans all its interfaces, finds all corresponding addresses, and uses them to generate the firewall
configuration. If an interface object is used in the rule, then the compiler uses all its addresses. And finally,
if an address or physical address object is used in the rule, then the compiler uses only this parameter to
generate the firewall configuration. In other words, the compiler always traverses the tree, starting from
the object found in the policy rule, and uses the parameters of all address and physical address objects it

Working with Objects

82

finds. Since address and physical address objects are the leaf nodes in the tree and have no other objects
beneath them, the compiler uses the parameters of these objects to generate the target code.

Note

There is an exception to this algorithm, see Section 5.2.9.1

5.2.11. IPv4 Network Object

Figure 5.55. The Network Object

The network object describes an IP network or subnet. Use main menu Net Object / New Network item to
create objects of this type. The Network object dialog object provides the following entry fields:

• Name:

Network Object Name
• Address:

The IPv4 address of the network.
• Netmask:

The netmask, in combination with an address, defines the subnet. You can enter either a string octet
representation of the mask or its bit length here; however the program always converts it to the octet
representation. The netmask in the network object is always entered in the "natural" way, such as
"255.255.255.0", even if the object is going to be used to build Cisco IOS access lists which require
reversed "bit mask" presentation instead (e.g., "0.0.0.255" for the netmask above). The Firewall Builder
policy compiler automatically makes the required conversion.

• Comment:

This is a free-form text field used for comments.

Let's use the network object shown above in a policy rule compiled for different target platforms.

Figure 5.56. IPv4 Network Object Used in a Rule

Working with Objects

83

Here is what we get for iptables:

$IPTABLES -A FORWARD -p tcp -m tcp -s 172.16.22.0/24 --dport 80 -m state \
--state NEW -j ACCEPT

Here is the output produced for PF:

pass in quick inet proto tcp from 172.16.22.0/24 to any port 80 keep state
pass out quick inet proto tcp from 172.16.22.0/24 to any port 80 keep state

Here is how the output looks like when the rule is compiled into Cisco IOS access lists. (This is one of
the generated access lists.)

ip access-list extended outside_out
 permit tcp 172.16.22.0 0.0.0.255 any eq 80
exit

Here is what we get when the rule is compiled into Cisco ASA (PIX) configuration. Note how the compiler
uses netmask 255.255.255.0 for PIX, while for IOS it was converted to 0.0.0.255. Also, the interface
"inside" was configured with network zone 172.16.0.0/12, which matched network object used in the
source element of the rule. Because of that, the compiler put the rule only into the access list attached to
interface "inside."

access-list inside_acl_in permit tcp 172.16.22.0 255.255.255.0 any eq 80
access-group inside_acl_in in interface inside

5.2.12. IPv6 Network Object

Figure 5.57. IPv6 Network Object

The network object describes an IPv6 network or subnet. This object is very similar to the IPv4 network
object, except you can only enter netmask as a bit length. Use main menu "Net Object / New Network
IPv6" item to create objects of this type.

Let's see what we get if we use an IPv6 network object in a policy rule as shown:

Working with Objects

84

Figure 5.58. IPv6 Network Object Used in a Rule

Here is the command generated for iptables:

$IP6TABLES -A FORWARD -p tcp -m tcp -s 2001:470:1f0e:162::/64 --dport 80 \
-m state --state NEW -j ACCEPT

Here is what we get for PF:

pass in quick inet6 proto tcp from 2001:470:1f0e:162::/64 to any port 80 keep state
pass out quick inet6 proto tcp from 2001:470:1f0e:162::/64 to any port 80 keep state

Here is the output for Cisco IOS access lists (only one ACL is shown):

ipv6 access-list ipv6_outside_out
 permit tcp 2001:470:1f0e:162::/64 any eq 80
exit

interface eth0
 ipv6 traffic-filter ipv6_outside_out out
exit

There is no IPv6 support for Cisco ASA (PIX) in Firewall Builder at this time.

5.2.13. Address Range Object

Figure 5.59. The Address Range Object

The address range object describes a continuous range of IPv4 addresses. (Arbitrary address ranges for
IPv6 is not supported.) To create a new address rRange object, use the main menu New Object / New
Address Rangeoption. Its dialog provides the following entry fields:

Working with Objects

85

• Name:

The name of the address range object

• Range start:

The address of the start of the range.

• Range end:

The address of the end of the range.

• Comment:

A free-form text field used for comments.

The address range is inclusive; that is, both the start and the end addresses are included in the range.

When the address range object is used in a rule, Firewall Builder replaces it with a list of addresses equiv-
alent to the specified range. The program tries to generate the most economical representation of the range
using a combination of subnets of different lengths. Consider the address range object shown above. This
address range object represents IP addresses between 192.168.1.100 and 192.168.1.160 (inclusively). It
would be wasteful to generate 61 iptables commands to represent this range. Instead, the compiler uses a
combination of several subnets of different lengths and ends up with the following:

$IPTABLES -A FORWARD -s 192.168.1.100/30 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -s 192.168.1.104/29 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -s 192.168.1.112/28 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -s 192.168.1.128/27 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -s 192.168.1.160 -m state --state NEW -j ACCEPT

Here is how the generated configuration looks for PF (this is essentially the same, except it uses tables
for brevity):

table <tbl.r0.s> { 192.168.1.100/30 , 192.168.1.104/29 , 192.168.1.112/28 , \
192.168.1.128/27 , 192.168.1.160 }

pass in quick inet from <tbl.r0.s> to any keep state

Just for completeness, let's look at the configuration generated for the same rule for Cisco IOS access
lists. This is really just a fragment of the generate router access list configuration because generated ACLs
are attached to interfaces and, since the rule in the example was not associated with any interfaces, it is
attached to all of them. Here we show only one generated ACL:

ip access-list extended inside_in
!
! Rule 0 (global)
!
!
 permit ip 192.168.1.100 0.0.0.3 any
 permit ip 192.168.1.104 0.0.0.7 any
 permit ip 192.168.1.112 0.0.0.15 any
 permit ip 192.168.1.128 0.0.0.31 any
 permit ip host 192.168.1.160 any
exit

Working with Objects

86

5.2.14. Address Tables Object
Sometimes you need to apply a rule to a set of addresses, but you don't know what those addresses will be
when you're writing the policy. The address table object object can help in these situations.

Figure 5.60. The Address Table Object

The address table object has the following fields:

• Name:

The name of the address rable object.
• Compile Time / Run Time:

Indicates whether you want the file to be loaded with the firewall compiler runs (Compile Time) or
when the firewall runs the firewall script (Run Time).

• File name:

The name of the text file you want to load. (The file contains IP addresses or IP address ranges.) The
filename can have any extension. If you want the file to load at run time, you must specify the path and
name where the file will be on the firewall machine, not on the client machine.

• Choose File button:

Used to populate the file name and path if the file is on the local machine. You can also type in a path
to a filename that you want to create.

• Edit File button:

Once the File name field is populated, use this button to view and update the file. If the file does not
already exist, Firewall Builder will generate a warning message.

• Comment:

A free-form text field used for comments

The Compile Time and Run Time radio buttons define when the addresses will be read from the file: when
the firewall script is generated by Firewall Builder or when the firewall runs the script.

If object is configured as Compile Time, the Firewall Builder policy compiler opens the file during com-
pilation and replaces the address table object in policy rules with the set of addresses from the file. This
means the file with addresses must be accessible on the machine where the Firewall Builder GUI and
policy compilers run.

If the object is configured as Run Time, policy compiler does not try to find and open the file but instead
generates a firewall script that will do this when it is activated. This means the file with addresses must

Working with Objects

87

be located where it is accessible by the firewall, and the object must be configured with the full path to
it on the firewall.

Here is an example of the file contents (this is what you see if you click the Edit File button in the object
dialog):

Figure 5.61. Address Table Text File

Note that comments in the file can start with "#" or ";", that a comment can follow an address on the
same line or take the whole line, and that lines can start with white space for formatting. This example file
contains both IPv4 and IPv6 addresses for illustration purposes.

Compile-time address table objects are supported on all target firewall platforms because addresses are
read by the compiler. The compiler then generates normal configuration lines or script commands. Run-
time address table objects require special support from the target firewall and are therefore supported only
on some of them. Currently run-time address table objects can be used in rules for iptables and PF firewalls.

Let's look at the firewall script generated by Firewall Builder for the iptables and PF when the Address
Table object used in the policy rule is configured first as "Compile Time" and then as "Run Time". The
rule is very simple and looks like (Figure 5.62):

Figure 5.62. Rule Using an Address Object

This rule, with the object set to Compile Time, generates the following output:

Working with Objects

88

Figure 5.63. Compile Time, iptables Compile Output

Rule 0 (global)

$IPTABLES -A INPUT -d 192.168.1.1 -j DROP
$IPTABLES -A FORWARD -d 192.168.1.2 -j DROP
$IPTABLES -A FORWARD -d 192.168.1.3/30 -j DROP
$IPTABLES -A FORWARD -d 192.168.2.128/25 -j DROP
$IPTABLES -A FORWARD -d 192.168.1.200 -j DROP
$IPTABLES -A FORWARD -d 192.168.1.201 -j DROP

The compiler replaced the object address_table_1 in the Destination with addresses it took from the file.
Option assume firewall is part of any was turned off in the firewall object settings, which is why compiler
did not generate rules in the OUTPUT chain. However, one of the addresses in the file matched the address
of one of the interfaces of the firewall (192.168.1.1) and the corresponding rule went into the INPUT chain.
Other addresses were copied from the file verbatim, including netmask specifications. The policy object
of this firewall was configured as "IPv4 rule set", because of this the compiler dropped the IPv6 addresses
it found in the file. If the rule set was configured as a mix of IPv4 and IPv6, compiler would use IPv4
addresses in IPv4 rules and IPv6 addresses in IPv6 rules.

Figure 5.64. Compile Time, PF Compile Output

Tables: (1)
table { 192.168.1.1 , 192.168.1.2 , 192.168.1.3/30 , 192.168.2.128/25 , \
192.168.1.200 , 192.168.1.201 }

Rule 0 (global)

block in quick inet from any to <tbl.r0.d>
block out quick inet from any to <tbl.r0.d>

The output for PF is simple because Firewall Builder can use the built-in table facility. All addresses are
copied from the file verbatim into the table tbl.r0.d.

Figure 5.65. Run Time, iptables Compile Output

Using 1 address table files
check_file "address_table_1" "/home/vadim/addr-table-1.tbl"

Rule 0 (global)

grep -Ev '^#|^;|^\s*$' /home/vadim/addr-table-1.tbl | while read L ; do
 set $L; at_address_table_1=$1; $IPTABLES -A FORWARD -d $at_address_table_1 -j DROP
done

First, the generated script checks if the file specified in the address table object exists on the firewall
machine. If the file is not found, the script aborts execution to avoid loading incomplete iptables rules.
However, the script cannot verify that the file is the one you intended it to be; it just assumes that if the file
with this name exists it is the right one and tries to interpret it as a list of IP addresses, with one address per
line. Then the script reads the file line by line, skipping comments, and assigns IP addresses to the shell
variable at_address_table_1, which it then uses in the iptables command.

Since the compiler did not see the addresses from the file, it could not detect that one of them matched an
address of the firewall and all iptables commands went to the FORWARD chain. The file /home/vadim/
addr-table-1.tbl should be located on the firewall where the generated iptables script will be executed so
the script can find it.

Working with Objects

89

Here is what you get if the option "Assume firewall is part of any" is turned on in the firewall object settings:

Figure 5.66. Run Time, iptables Compile Output: assume firewall is part of "any"

Rule 0 (global)

grep -Ev '^#|^;|^\s*$' /home/vadim/addr-table-1.tbl | while read L ; do
 set $L; at_address_table_1=$1; $IPTABLES -A OUTPUT -d $at_address_table_1 -j DROP
done
grep -Ev '^#|^;|^\s*$' /home/vadim/addr-table-1.tbl | while read L ; do
 set $L; at_address_table_1=$1; $IPTABLES -A FORWARD -d $at_address_table_1 -j DROP
done

The difference is that compiler generated two sets of commands, one in chain OUTPUT and another in
chain FORWARD. The original rule has "any" in source, and if the option Assume firewall is part of any is
turned on, the compiler assumes the source of the rule can have either an unknown address or the firewall.
The former makes it generate iptables command in the FORWARD chain and the latter makes it generate
iptables command in the OUTPUT chain. This logic is not specific to the address table object type; the
compiler does this regardless of the type of the object used in destination if source is "any" and option
Assume firewall is part of any is turned on.

Figure 5.67. Run Time, PF Compile Output

Tables: (1)
table persist file "/home/vadim/addr-table-1.tbl"
Rule 0 (global)

block in quick inet from any to <address_table_1>
block out quick inet from any to <address_table_1>

PF is even easier in the case of run time address tables. The compiler just uses table facility with persist
and file options to direct pfctl to open the file and read its contents. In this case, the file should follow the
formatting requirements of PF.

Policy compiler for PF treats address table objects with empty file name in a special way. It just generates
the line "table <table_name>" at the beginning of the .conf file with no file specification. This table will
not be populated when .conf file is loaded and therefore will remain empty, but it can be used in the rules.

Addresses can be added to the table later using external scripts that call pfctl like this:

Figure 5.68. Using pfctl to add a host to the table

pfctl -t bad_hosts -T add 192.0.2.1

Another interesting possibility is to automatically populate the table if option "overload" is used in com-
bination with other rate limiting options on a rule. Taking an example from the man page for pf.conf, here
is how it looks:

Figure 5.69. Example using the "overload" command to auto populate a table

block quick from <bad_hosts>
pass in on $ext_if proto tcp to $webserver port www keep state \
 (max-src-conn-rate 100/10, overload <bad_hosts> flush global)

Working with Objects

90

The idea behind these rules is that if some host tries to connect to the web server too often -- more often
than is allowed by max-src-conn-rate 100/10 -- its address will be added to the table <bad_hosts> by PF.
The next time this host tries to connect, the packet coming from it will be denied by the blocking rule
right away.

To implement these rules in Firewall Builder, you would create an Address Table object with the name
"bad_hosts" but a blank file name, configured to resolve at run time:

Figure 5.70. Address Table Object bad_hosts

Then, use this address table object in the source field of a policy rule with action "Deny". This is rule #0 in
the screenshot below. Another rule, rule #1 in the screenshot, has action "Accept" and matches destination
against address of the web server, protocol http, and has limiting options set up to restrict the number of
connections and to turn overload table on, with the name of the overload table "bad_hosts" that matches
the name of the address table object.

Figure 5.71. Address Table Object bad_hosts Rules

These two rules, as shown on the screen shots, yield the following PF configuration that matches the one
given in the man page:

Working with Objects

91

Figure 5.72. Example pf rules using table objects

Tables: (1)
table <bad_hosts> persist

Rule 0 (global)

block in log quick inet from <bad_hosts> to any

Rule 1 (global)

pass in quick inet proto tcp from any to 192.168.1.1 port 80 \
 keep state (max-src-conn-rate 100/10, overload <bad_hosts> flush global)

5.2.14.1. Using Address Tables Objects with iptables IP Sets

Beginning with Firewall Builder version 4.1, there is support for iptables firewalls to use the netfilter ipset
module. The ipset module provides a method for storing a list of IP addresses or IP subnets in memory.
This allows firewall administrators to define a single iptables rule that matches multiple IP addresses or IP
subnets as the source and/or destination. In Firewall Builder an "ipset" is associated with an address table
object where the list of addresses and subnets are defined in a file.

Using the IP sets feature requires an iptables version of at least 1.4.1.1 and requires that the target fire-
wall have the ipset module installed. There are instructions for installing the ipset module for some
distributions described in the Appendix Section 16.1.1. If you have installation instructions for in-
stalling the ipset module on a distribution not listed in the Appendix please e-mail info@fwbuilder.org
[mailto:info@fwbuilder.org].

You can find more information about the netfilter ipset module at the netfilter IP sets page [http://
ipset.netfilter.org/features.html].

NOTE: Testing if your iptables firewall supports IP set

To test if your firewall has the ipset module and ipset tools installed run the following commands
from a shell. Note you must be root or have sudo rights to run the command.

Test to check if ipset tools are installed

fwadmin@guardian:~$ sudo ipset --version
ipset v2.5.0 Protocol version 2.
fwadmin@guardian:~$

Test to check if ipset module is installed

fwadmin@guardian:~$ sudo ipset -N test iphash
FATAL: Module ip_set not found.
ipset v4.1: Couldn't verify kernel module version!
fwadmin@guardian:~$

To enable the iptables "IP sets" functionality in Firewall Builder, you must explicitly set the version of the
iptables firewall that you want to use with the ipset module. Navigate to the firewall and double-click to
open the object in the editor window. Set the iptables version number to a version that is at least 1.4.1.1.

mailto:info@fwbuilder.org
mailto:info@fwbuilder.org
http://ipset.netfilter.org/features.html
http://ipset.netfilter.org/features.html
http://ipset.netfilter.org/features.html

Working with Objects

92

Figure 5.73. Set the firewall iptables version number

After you have set the iptables version number, click Firewall Settings for this firewall. Near the bottom
of the Firewall Settings dialog window you there is a checkbox that says:

Use module "set" for run-time address table objects. (This module is only available in iptables v 1.4.1.1
and later.)

Select this checkbox to enable using the iptables ipset module.

Working with Objects

93

Figure 5.74. Set the Firewall Settings to Use the "IP set" Module

If the checkbox and text are shown as greyed out, then go back and check that you set the iptables version
number for this firewall.

You can only use address tables that are set to Run Time with the ipset module. Compile Time address
table objects will behave as before with the objects in the specified file being expanded when the firewall
is compiled.

NOTE: Mixed IP addresses and IP Subnets in "IP Sets"

Normally the ipset module requires you to create separate "sets" for IP addresses and IP subnets.
Firewall Builder, through its abstraction layer, enables you to create mixed IP addresses and IP
subnets in the same file. This creates what is known as a "set list" that contains two "sets", one
"set" that includes only IP addresses and another "set" that includes only IP subnets.

The following example shows the Firewall Builder configuration steps for setting up an Addresss Table
called "bad_hosts", using that address table in a rule, and confirming the ipset configuration.

Working with Objects

94

Figure 5.75. Address Table Object

Figure 5.76. Editing the Address Table File

Figure 5.77. Rule Using Address Table Object

You can use the ipset tools to view the configuration of your "sets" once they have been created by Firewall
Builder on your firewall. For example, the command ipset --list will list all the configured "sets" on your
firewall.

If you install a firewall that is using address tables with ipset enabled you can update the list of addresses
that are stored in memory for that "set" by updating the file associated with the address table object and
then running the firewallscript.fw reload_address_table command. For the examples shown above you
would enter:

guardian.fw reload_address_table bad_hosts /etc/fw/bad_hosts

where "guardian.fw" matches the name of your Firewall Builder script file and "bad_hosts" is your address
table object. This dynamically updates the list of addresses stored in memory for the bad_hosts set while
iptables is running.

NOTE: Naming Convention for Address Table Objects and
"Sets"

When Firewall Builder creates the "set" it substitutes an underscore ("_") for any spaces.
For example, the address table named "My Address List" would have a "set" name of
"My_Address_List". Also, note that the name of the address table object cannot start with colon
(":") due to restrictions in the ipset module.

Working with Objects

95

There are two primary benefits of using the ipset module. First, the performance for matching a single rule
that is using a set to hold a large number of addresses is better than having individual rules for each of
these addresses. Second, the ipset module and tools provide a way to dynamically update the addresses
in a list while the firewall is still running.

5.2.15. Special-Case addresses
Policy compilers treat some addresses in policy rules in special ways, depending on the requirements of the
target firewall platform. For example, the compiler for iptables checks if the address found in "Destination"
or "Source" of a rule matches the address of any interface of the firewall to determine if the rule should be
placed in INPUT or OUTPUT chain. The compiler for PIX uses the command ssh <address> <netmask>>
inside when it detects such an address in the destination of a rule where the service is TCP Service object
"SSH". There are other special cases as well.

5.2.15.1. Broadcast and Multicast Addresses, iptables Firewall
Two important special cases are broadcast and multicast addresses. It is important to place rules in the
correct chain in generated iptables script, because even though these addresses are not equal to those of
the firewall's interfaces, iptables processes packets with broadcast or multicast destination in the INPUT
chain. Firewall Builder is aware of this and generates the correct iptables commands.

In order to match broadcast or multicast addresses in the rules, we need to create objects to describe them.
The choice of object type to describe broadcast or multicast address depends on whether this is just a single
address, a range or a block. An address object is good for defining a single address, address range is good
for sets of consecutive addresses and network object is good for describing a block. For example, you can
use an address object with address "255.255.255.255" to describe a broadcast. address range with addresses
"224.0.0.5 - 224.0.0.6" would work well to describe two multicast groups used by OSPF. A network object
with address "224.0.0.0" and netmask "240.0.0.0" can be used to describe a whole multicast address block.

Here are few examples:

Figure 5.78. Multicast Object

Object "all multicasts" is part of the Standard Objects library that comes with the program. It describes an
entire address block allocated for multicasts. Consider a simple policy rule that permits all multicasts:

Figure 5.79. Multicast Rule

Working with Objects

96

For iptables, this rule translates into the following script:

$IPTABLES -A INPUT -d 224.0.0.0/4 -m state --state NEW -j ACCEPT

The rule went into the INPUT chain because iptables processes multicast there.

Here is another example, this time it involves broadcast addresses. The interface "inside" of the test firewall
has address 172.16.22.1 with netmask 255.255.255.0. This defines subnet 172.16.22.0/255.255.255.0 with
broadcast address 172.16.22.255. We create an address object with the name "net-172.16.22 broadcast"
and address "172.16.22.255" and use it in the destination field of a policy rule. Another rule in the same
example will match broadcast address "255.255.255.255"; an address range object that defines this address
is present in the standard objects library under the name "broadcast". Here are the rules:

Figure 5.80. Broadcast Rules

These two rules translate into the following script for iptables:

Rule 0 (global)

$IPTABLES -A INPUT -d 255.255.255.255 -m state --state NEW -j ACCEPT

Rule 1 (global)

$IPTABLES -A INPUT -d 172.16.22.255 -m state --state NEW -j ACCEPT

Both rules went into INPUT chain as expected.

5.2.15.2. Broadcast and Multicast Addresses and Bridging iptables
Firewall

Compilers treat broadcast and multicast addresses differently if the firewall object is set to be a bridging
firewall. In this case the checkbox "Bridging firewall" should be turned on in the firewall settings dialog
and one or more interface objects should be marked as "Bridge port":

Figure 5.81. Broadcast and Multicast Address in a Bridging Firewall

Working with Objects

97

Now the rule that matches the broadcast destination address will be treated differently:

Figure 5.82. Broadcast and Multicast Address in a Rule

This produces the following iptables commands:

$IPTABLES -A FORWARD -d 172.16.22.255 -m state --state NEW -j ACCEPT
$IPTABLES -A INPUT -d 172.16.22.255 -m state --state NEW -j ACCEPT

Rules went into both INPUT and FORWARD chains because the bridging firewall passes broadcasts
through, but at the same time accepts them as packets headed for itself. Since the rule did not specify
which interface it should look at, Firewall Builder assumed that the generated rule should inspect packets
crossing all interfaces, both bridge ports and "normal" ones, and therefore placed the rule in both INPUT
and FORWARD chains.

5.2.16. DNS Name Objects
A DNS Name object represents a DNS "A" or "AAAA" record. The object resolves into IP address at
compile or run time. The address (IPv4 or IPv6) the object resolves to depends the address family or
families of the rule set it is used in. That is, if the object is used in a rule that is part of IPv4 rule set, the
compiler will try to resolve the object using DNS query for the "A" record, but if the object is used in a rule
that is part of an IPv6 rule set, the compiler will run a "AAAA" query. If the rule set where the object is
used is a mixed type (IPv4+IPv6), the compiler will resolve the same object twice using different queries.

The DNS Name object dialog looks like this:

Figure 5.83. DNS Name Object

• Name:

The name of the DNS Name object
• DNS Record:

Working with Objects

98

The DNS record you want to resolve.
• Compile Time / Run Time:

Indicate whether you want to resolve the IP address when you create the firewall script (compile time)
or when you run the script on the firewall (run time).

• Comment:

A free-form text field used for comments

The DNS Record parameter is the name of the A or AAAA record we want to resolve. In this example, it is
the host name of the Firewall Builder project web site "www.fwbuilder.org". Note that IPv6 web server for
the project is accessible as "ipv6.fwbuilder.org" so we are going to need second DNS name object for IPv6
examples. Compile Time and Run Time options have the same meaning as those in the address table object,
that is, a compile-time DNS name object is converted to the IP address by the policy compiler, while a run-
time DNS name object is not. In the latter case, the compiler puts the DNS record name into the generated
script or configuration file and leaves it up to the firewall to resolve it when the script is activated.

Both compile-time and run-time DNS name objects are supported on all target firewall platforms.

Let's look at how the simple rule shown in Figure 5.89 compiles for iptables and PF, both for compile-time
and run-time DNS name objects.

Figure 5.84. Rule Using DNS Name Object

Figure 5.85. DNS Name Compile Time, iptables Compile Output

Rule 0 (global)

$IPTABLES -A FORWARD -d 70.85.175.170 -m state --state NEW -j ACCEPT

In this trivial case, the compiler simply resolved "www.fwbuilder.org" to an IP address and used it in the
iptables command. However, if the policy rule was in a rule set configured as an IPv6-only rule set, the
rule would not produce any iptables command at all because there is no AAAA DNS record with name
"www.fwbuilder.org". If the rule set was both IPv4+IPv6, then the rule would generate iptables command
only in the IPv4 part. The opposite is also true: the DNS name object with record "ipv6.fwbuilder.org"
will only produce iptables commands when used in IPv6 rule set because there is only an AAAA record
with this name.

Figure 5.86. DNS Name Compile Time, PF Compile Output

Rule 0 (global)

pass in quick inet from any to 70.85.175.170 keep state

The same is true in the case of PF: the compiler simply resolved the name "www.fwbuilder.org" and put
the address in the generated pf.conf file. Since this name does not resolve into any IPv6 address, IPv6 PF
policy would not have any line for this rule. The DNS record "ipv6.fwbuilder.org" resolves only into an

Working with Objects

99

IPv6 address, and therefore DNS name object with this record would only produce pf.conf configuration
for IPv6 and not for IPv4.

Figure 5.87. DNS Name Run Time, iptables Compile Output

Rule 0 (global)

$IPTABLES -A FORWARD -d www.fwbuilder.org -m state --state NEW -j ACCEPT

Here the compiler used the line entered in the DNS record parameter literally, leaving it up to iptables on
the firewall machine to resolve this name into an IP address. Using a run time DNS name object in IPv6
policy generates the following iptables command:

Rule 0 (global)

$IP6TABLES -A FORWARD -d ipv6.fwbuilder.org -m state --state NEW -j ACCEPT

$IP6TABLES is the shell variable defined at the beginning of the generated script; the value of this variable
is the full path to the ip6tables command line utility. ip6tables will try to resolve given name to an IPv6
address since it processes IPv6 iptables policy.

Figure 5.88. DNS Name Run Time, PF Compile Output

Rule 0 (global)
#
pass in quick inet from any to www.fwbuilder.org keep state
pass out quick inet from any to www.fwbuilder.org keep state

Run-time DNS name object translates into PF configuration lines that also use the name of the DNS record
and leave it up to PF to actually resolve it to an IP address when the configuration is loaded.

5.2.17. Object Groups

Figure 5.89. Group of Objects

The group of objects holds references to hosts, networks, address ranges, firewalls and other groups of
addressable objects (Figure 5.89). Use the New Object / New Object Group option to create a new group.
Objects can be added to the group using the following methods:

Working with Objects

100

• Using drag and drop:

Objects can be dragged from the tree into the group dialog. Click, hold down the mouse button, and
drag the object to add it to the group.

• Using the popup menu:

You can use copy and paste operations between the tree and group dialog. Right-clicking the object in
the tree opens a pop-up menu. Choose Copy in this menu, then move the mouse to the group dialog
and right-click in the icon field. This also opens a pop-up menu, where you choose Paste. This inserts
a reference to the object in the group.

• Using the Edit main menu:

Select the object in the tree, select Edit/Copy Object from the menu bar, click the group dialog, and then
select Edit/Paste Object from the menu bar.

5.2.18. Dynamic Object Groups
Dynamic Groups allow you to define filter criteria to match objects based on their Object Type and Key-
words. When a Dynamic Group is used in a rule the compiler automatically expands the group to include
all the objects that match the filter criteria at the time the compiler is run.

To create a Dynamic Group right-click on the Groups system folder in the object tree and select "New
Dynamic Group". Figure 5.90 shows the new group in the Editor Panel with the default values set.

Figure 5.90. Creating a Dynamic Group

Click Add Match to create filter rules that will be used to determine which objects will be included in the
Dynamic Group. Multiple filter rules can be created in a single group. The logic used between rules is
"OR" where an object that matches any of the rules will be included in the group.

Within a filter rule, the logic between the Object Type and Keyword fields is "AND" logic where both
elements need to match in order for an object to be included in the group. For example, a filter rule with
the Object Type set to Network and the Keyword set to "New York" will only match Network objects that
have the keyword set to New York.

Dynamic Group Example

In this example the Firewall Builder data file includes a number of objects that have already been defined.
Some of these objects have been configured with keywords like "New York" and "London" to identify the
city where the element the object represents is located.

Working with Objects

101

To create a rule that matches all the network objects that are associated with New York, we create a new
Dynamic Group called New York Networks as shown in Figure 5.91.

Figure 5.91. Example of Dynamic Group

From the preview window you can see that there are four networks that have Keywords that include New
York (remember that an object can have more than one Keyword defined).

Figure 5.92 shows a rule that includes the Dynamic Group object in the Source column of the rule.

Figure 5.92. Dynamic Group Used in a Rule

Running a single rule compile, shown in Section 10.2, for this rule will result in all the objects that match
the current filter rules in the "New York Networks" Dynamic Group getting expanded to match the four
network elements that have Keywords that include New York. The single rule compile output is shown
in Figure 5.93.

Figure 5.93. Compile Output of a Rule That Uses Dynamic Group

Adding a new filter rule to the "New York Networks" Dynamic Group to include any Address Ranges that
include the Keyword of New York will result in the group shown in Figure 5.94.

Figure 5.94. Updated Dynamic Group

Recompiling a rule that uses the "New York Networks" Dynamic Group object will automatically detect
the additional Address Ranges that include the Keyword of New York. Figure 5.95 shows the updated
compiler output.

Working with Objects

102

Figure 5.95. Updated Dynamic Group

5.3. Service Objects
In Firewall Builder, service objects represent IP, ICMP, TCP, and UDP services such as "host unreachable"
in ICMP, HTTP in TCP, GRE in IP, and DNS in UDP. Firewall Builder provides service objects for
hundreds of well-known and frequently-used services in ICMP (IP protocol number 1), TCP (IP protocol
number 6), and UDP (IP protocol number 17).

5.3.1. IP Service
The IP service object describes protocols that are not ICMP, TCP, or UDP. (ICMP, TCP, and UDP have
their own service objects.) An IP protocol is defined by the 8-bit field in the IP packet header. The screen-
shot below represents the ESP object (Encapsulating Security Payload, part of the IPSEC protocol family)
which uses the IP protocol number 50.

Figure 5.96.

Note

Protocol numbers are assigned by IANA; you can look up the number for a particular protocol at
the following URL: http://www.iana.org/assignments/protocol-numbers/

Besides the protocol number, the header of the IP packet also has a field called "Options" which is a
variable-length list of optional information for the packet. Not all firewalls can examine options, and those
that can usually have certain limitations as to what options they can match against. Firewall Builder tries
to provide controls for many popular options supported by the most sophisticated firewalls. Not all options
supported by Firewall Builder are supported by all target firewall platforms (Table 5.3).

Table 5.3. Support for IP options and fragmentation on various firewall platforms

Firewall lsrr ssrr rr timestamp all frag-
ments

'short'
packets

iptables + + + + + -

Working with Objects

103

Firewall lsrr ssrr rr timestamp all frag-
ments

'short'
packets

ipfilter - + + + + +

pf - - - - + -

Cisco PIX - - - - - -

Source route options:
LSRR, SSRR

Normally IP routing is dynamic, with each router making decisions
about which next hop router to send the packet to. However, anoth-
er option exists where the sender can choose the route. In the case
of the Loose Source Route, the sender (host) can specify a list of
routers the packet must traverse, but it may also pass through oth-
er routers between any two addresses in the list. The Strict Source
Route works very much the same way, except the packet must tra-
verse only through the specified addresses. Source routing can po-
tentially be used to reach hosts behind the firewall even if these
hosts use private IP addresses, which normally are not reachable
over the Internet.

Record route option: RR This option causes every router that handles the packet on the way
to add its IP address to a list in the options field. This option is
used by the ping utility when it is called with the "-R" command
line switch; it can potentially be exploited to discover the internal
network addressing and layout behind the firewall. Although the
risk is low, some firewall administrators prefer to block packets
with this option set.

Timestamp option: This option tells routers that handle the packet to record their time-
stamps and sometimes addresses (like in the case of the record route
option). This option is seldom used, but can potentially be exploited
to gather information about the protected network, so some firewall
administrators prefer to block packets with this option set.

Fragment options: IP packets may sometimes become fragmented. This happens if the
original datagram is larger than what a physical network layer can
transmit. The IP packet header has special fields (called "Flags" and
"Fragmentation Offset") that detect fragmented packets and help
reassemble them. Many firewalls can check these bits as well. Cer-
tain combinations of flags and fragmentation offsets can never hap-
pen during normal operation but were seen to be used by attackers.
Firewall Builder provides two options for handling the most com-
monly used cases: the "all fragments" option matches the second
and further fragments, while the "short" option is used to match
packets that are too short to contain even a complete IP header.

Standard IP service objects that come with Firewall Builder appear in the Standard tree, in the Services/IP
branch.

You can create your own IP Service objects in the User library.

Working with Objects

104

Figure 5.97. Creating/Editing an IP Service Object

Service objects in the Standard are not editable. However, you can copy and paste a copy of a service
object into the User tree and edit it there, or you can right-click the IP folder in the User tree and select
New IP Service to create a service object from scratch.

In either case, the controls are the same.

The IP Service dialog provides the following controls:

• Name:

This is the name of the object

• Protocol:

This is the protocol number.

• DiffServ

You can specify DSCP or TOS using the radio buttons. In either case, specify a code (or class) in the
field. If you do not specify a code or class, Firewall Builder ignores the DiffServ type (DSCP or TOS).

• Options:

These flags represent "Options" flags in the IP header:

lsrr (loose source route)
ssrr (strict source route)
rr (record route)
timestamp
all fragments
short fragments

• Comments:

This is a free-style text field used for comments.

5.3.1.1. Using IP service objects in policy rules

Consider the following IP Service objects:

Working with Objects

105

Table 5.4.

Object EF has DSCP matching turned on, matching traffic class EF. Object TOS 0x10 matches packets
with TOS bits set to 0x10 (low delay). Object all_fragments has flag "all fragments" turned on, and finally
object lsrr matches "loose source routing" option. Here is what we get for iptables when we use these
objects in policy rules as follows:

Figure 5.98.

Rule 0 (global)

$IPTABLES -N RULE_0
$IPTABLES -A FORWARD -p all -f -j RULE_0
$IPTABLES -A FORWARD -p all -m ipv4options --lsrr -j RULE_0
$IPTABLES -A RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A RULE_0 -j DROP

Rule 1 (global)

$IPTABLES -A FORWARD -o + -p all -m dscp --dscp-class EF -m state \
--state NEW -j ACCEPT
$IPTABLES -A FORWARD -o + -p all -m tos --tos 0x10 -m state --state NEW \
-j ACCEPT

The compiler for iptables uses the ipv4options module to match lsrr, the -f command line option to match
all fragments, the tos module to match TOS and the dscp module to match DSCP class.

Working with Objects

106

When compiled for IPv6, these rules yield the following iptables commands:

Rule 0 (global)

$IP6TABLES -N RULE_0
$IP6TABLES -A FORWARD -m frag --fragmore -j RULE_0
$IP6TABLES -A RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IP6TABLES -A RULE_0 -j DROP

Rule 1 (global)

$IP6TABLES -A FORWARD -o + -m dscp --dscp-class EF -m state --state NEW -j ACCEPT
$IP6TABLES -A FORWARD -o + -m tos --tos 0x10 -m state --state NEW -j ACCEPT

ip6tables does not have the -f command line flag; instead, it uses the frag module to match fragments.
Firewall Builder currently does not support the ip6tables ipv6header module, and source routing options
do not exist in IPv6, so object "lsrr" cannot be used in rules.

PF cannot match DSCP bits and source routing options, but it can match TOS. Trying the same IP Service
object "tos 0x10" in policy rules for PF:

Figure 5.99.

pass out quick inet from any to (eth0) tos 0x10 keep state

Cisco IOS access lists cannot match source route options but can match fragments and TOS and DSCP bits.
Here is what we get if we try to compile the same rules using the same IP service objects for Cisco IOS:

Figure 5.100.

Working with Objects

107

ip access-list extended e1_0_out
!
! Rule 0 (global)
!
 deny ip any any log fragments
!
! Rule 1 (global)
!
 permit ip any any tos 0x10
 permit ip any any dscp EF
exit

5.3.2. ICMP and ICMP6 Service Objects
The ICMP service object is a generalized representation of the ICMP protocol. ICMP packets are often
used to communicate error messages that are acted upon by either the IP layer or higher-layer protocols
(TCP or UDP). ICMP can also be used as a simple query protocol.

Firewall Builder has service objects for both IPv4 and IPv6. ICMP service objects for IPv6 are called
ICMP6 service. The standard ICMP service objects that come with Firewall Builder appear in the Standard
Objects library, in the Services/ICMP branch. User-defined ICMP and ICMP6 service objects appear in
the library User in the same Services/ICMP branch.

Standard service objects are not editable. However, you can copy and paste a copy of a service object into
the User tree and edit it there, or you can right-click the ICMP folder in the User tree and select New ICMP
Service to create a service object from scratch.

Figure 5.101.

As a firewall administrator, you need to understand the nature and purpose of ICMP in order to properly
configure the firewall to block unwanted ICMP messages while permitting useful ones.

ICMP packets have two header fields that distinguish particular ICMP messages: the type and code fields.
There are many different types and classes of ICMP messages. See http://www.iana.org/assignments/icmp-
parameters for IPv4 types and classes and http://www.iana.org/assignments/icmpv6-parameters (http://
www.iana.org/assignments/icmpv6-parameters) for IPv6 types and classes.

Any combination of the type and code values is allowed in the ICMP or ICMP6 object. For example, the
following two screen shots illustrate definitions of ICMP and ICMP6 objects for the request packet of the

Working with Objects

108

well-known ping protocol. The type codes are different for IPv4 and IPv6 variants, although the code is
equal to 0 in both:

Figure 5.102.

Figure 5.103.

Both ICMP and ICMP6 allow value "any" in type or code fields. For example, this can be used to build
an object to match a family of ICMP messages with the same type but any code:

Figure 5.104.

Both IPv4 and IPv6 ICMP service dialogs provide the following controls:

• Name: This is the name of the object.

• ICMP Type and Code:

• Type: The ICMP message type. This control consists of a numeric selector that lets you specify the
message type. To specify "any" type, set the control to any.

• Code: The ICMP message code. This control consists of a numeric selector that lets you specify the
message code. To specify "any" code, set the control to any.

• Comment: This is a free-style text field used for comments.

Working with Objects

109

5.3.2.1. Using ICMP and ICMP6 Service Objects in Rules

Consider the following rule where we use two ICMP objects, one for IPv4 and another for IPv6:

Figure 5.105.

If the rule set this rule belongs to is configured as combined IPv4 and IPv6, then policy compiler will pick
the ICMP service that matches address family on each separate pass, one for IPv4 and then for IPv6. Here
is what we get for iptables:

================ IPv4

Rule 0 (global)

$IPTABLES -A FORWARD -i + -p icmp -m icmp --icmp-type 8/0 \
 -m state --state NEW -j ACCEPT

================ IPv6

Rule 0 (global)

$IP6TABLES -A FORWARD -i + -p ipv6-icmp -m icmp6 --icmpv6-type 128/0 \
 -m state --state NEW -j ACCEPT

Here is generated PF 4.x configuration:

Rule 0 (global)

pass in quick inet proto icmp from any to any icmp-type 8 code 0

Rule 0 (global)

pass in quick inet6 proto icmp6 from any to any

5.3.3. TCP Service
The TCP service object is a generalization of the TCP protocol, which provides a connection-oriented re-
liable byte-stream service. Many well-known, frequently-used application protocols use the TCP protocol:
FTP (File Transfer Protocol), SMTP (Simple Mail Transfer Protocol), HTTP (Hyper Text Transfer Pro-
tocol), and so on. The TCP header contains special fields indicating source and destination port numbers
that are used to identify the sending and receiving application. These two values, along with the source
and destination IP addresses in the IP header, uniquely identify each connection.

Since port numbers are used to distinguish applications using the data stream provided by the TCP proto-
col, each application should use a unique port number. To ensure interoperability, these numbers must be
assigned by a central authority in a coordinated manner. Internet Assigned Numbers Authority (IANA)
does just that. Assigned TCP and UDP port numbers can be looked up at http://www.iana.org/assign-

Working with Objects

110

ments/port-numbers. Most Unix systems also come with a /etc/services file that contains a list of assigned
port numbers.

Firewall Builder comes with a collection of predefined TCP Service objects with port numbers already
configured. You can simply use these objects in your policy rules, so you do not have to look up port
numbers every time you need them. These objects are part of the Standard Objects library and are located
in the Services / TCP branch.

Figure 5.106.

The typical TCP Service object is represented in the following screenshot:

Figure 5.107.

In Firewall Builder, the TCP service object is a generalization of TCP protocol. The TCP header of a
packet carries only one fixed value for the source port and one fixed value for the destination port. The
TCP Service object allows a range of values to be used for the source and destination ports. This allows
a single TCP Service object to describe either a family of protocols using consecutive port numbers, or
a protocol that may use variable port numbers or simply many protocols that use port numbers from a
certain range. For example, on Unix systems, TCP sessions opened by a privileged process always have
their source port number assigned from a range below 1024, while unprivileged processes use source port
numbers from a range starting from 1024 and above. The TCP Service object with a source port range
defined as shown in the following screenshot describes all privileged TCP sessions.

Working with Objects

111

Figure 5.108.

Using "0" as both start and end values for a range means "any value" for that range. The source port
range of the "privileged TCP" object starts from 0 and ends at 1023 (port ranges are inclusive in Firewall
Builder), while its destination port range's start and end are both set to zero, which means "any destination
port". This object describes any TCP protocol with a source port in range 0-1023 and any destination port.

If all you need is to create an object to describe the TCP protocol with a particular destination port, just
use the same port number for both the start and end of a destination port range (which effectively creates
a range that consists of a single value). The example in Figure 6-70 shows such a service.

The TCP header also contains a collection of one-bit fields, or flags, that carry a variety of control infor-
mation. For example, the SYN and ACK flags are used for connection establishment and the FIN flag is
used for connection termination. Certain combinations of flags are not allowed during the normal protocol
operation and may cause unpredicted reactions in some systems; because of this, the firewall administrator
may want to block TCP packets with an unwanted combination of flags.

There are six flags in the TCP header. We just briefly mention them here; more information can be found
in TCP/IP Illustrated, vol 1 by W. Richard Stevens, chapter 17.

U (URG) The "urgent" pointer is valid

A (ACK) The acknowledgment number is valid

P (PSH) The receiver should pass this data to the application as soon as possible

R (RST) Reset the connection

S (SYN) Synchronize sequence numbers to initiate a connection.

F (FIN) The sender is finished sending data.

"Established" is not a TCP flag. Instead, checking this box causes the firewall to match any packet in an
established session. Checking this checkbox disables the other TCP flag controls.

Firewall Builder supports all six flags, although not all target firewall platforms can match all combinations
of TCP flags or any flags at all. For example, iptables, pf, ipfilter and ipfw can match flags and their
combinations, but Cisco PIX cannot.

Usually the firewall cannot only match a combination of flags, but can also examine only a given subset of
TCP flags. Firewall Builder provides two sets of checkboxes for TCP flags and flag masks (see screenshot
below). Checkboxes in the first row control TCP flags that we want the firewall to examine and checkboxes
in the second row tell it whether they should be set or cleared. Only flags whose checkboxes in the first
row are set will be looked at by the firewall. (If you check a box in the bottom row while leaving the
checkbox above it unchecked, the flag will be ignored.)

The object in the screenshot matches a TCP packet with any combination of port numbers, the TCP flag
SYN set, and all other flags cleared. The firewall will examine all TCP flags.

Working with Objects

112

Figure 5.109.

A combination of flags and a mask can be used in a rule that looks for some flags to be set or unset and
ignores other ones, regardless of their state. For example, we can create a rule that detects a so-called "null
scan" which is done using TCP packets with all flags cleared. For this rule, we create a TCP service object
"tcp null scan" where all flag masks are set but all TCP flags are cleared. This means we examine all flags
but only match them if they are all cleared. This object is represented in the following screenshot:

Figure 5.110.

TCP Service dialog provides the following controls:

• Name: This is the name of the object

• Source port range: These two controls define the start and end of the source port range. They accept
values 0 through 65535.

• Destination port range: These two controls define the start and end of the destination port range. They
accept values 0 through 65535.

• TCP Flags: TCP flags and masks, see above. The Established checkbox causes the firewall to match
packets in established sessions. Selecting this checkbox disables the other TCP flag controls.

• Comments: This is a free-style text field used for comments.

5.3.3.1. Using TCP Service in rules

5.3.3.1.1. Single destination TCP port

Let's start with an example using simple TCP service that describes the HTTP protocol. Both the beginning
and the end of the source port range in this service object are set to "0," which means the program will
leave these out when it generates target firewall configuration. The destination port range is defined as
"80-80" which means the object describes just single destination tcp port "80". All flag checkboxes are
unchecked, which means no flag-matching configuration will be generated.

Working with Objects

113

Figure 5.111.

Now we put this object in the "Service" element of a rule as shown on the next screenshot. To make this
trivial example just a little bit more interesting, we configured the policy rule set as "Combined IPv4 and
IPv6" and put two address objects in destination, one is IPv4 address and another is IPv6 address.

Figure 5.112.

This rule compiles into the following for iptables:

================ IPv4

Rule 0 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -d 70.85.175.170 \
 --dport 80 -m state --state NEW -j ACCEPT

================ IPv4

Rule 0 (global)

$IP6TABLES -A FORWARD -p tcp -m tcp -d 2001:470:1f0e:162::2 \
 --dport 80 -m state --state NEW -j ACCEPT

And for PF we get the following. Note that PF version was set to "any" or "3.x", this is why "keep state"
was added. "Keep state" is default for PF 4.x and if version was configured as "4.x" in this firewall object,
policy compiler would have dropped "keep state" from the generated configuration.

Rule 0 (global)

pass in quick inet proto tcp from any to 70.85.175.170 port 80 keep state
pass out quick inet proto tcp from any to 70.85.175.170 port 80 keep state

Rule 0 (global)

pass in quick inet6 proto tcp from any to 2001:470:1f0e:162::2 port 80 keep state
pass out quick inet6 proto tcp from any to 2001:470:1f0e:162::2 port 80 keep state

Working with Objects

114

5.3.3.1.2. Source port range

In the next example, we look at the TCP service object that defines a specific source port range to match
source ports greater than or equal to 1024:

Figure 5.113.

Using this object in a rule as follows:

Figure 5.114.

To make the rule slightly more realistic, we made it stateless using its options dialog (double-click in the
column "Options" of this rule and check checkbox "Stateless" in the first tab of the dialog). Let's see what
the program generates when this rule is compiled for iptables:

Rule 0 (global)

$IPTABLES -A FORWARD -i + -p tcp -m tcp --sport 1024:65535 -j ACCEPT

Here is what is generated for PF 3.x:

Rule 0 (global)

pass in quick inet proto tcp from any port >= 1024 to any

And for PF 4.x we get "no state" because the rule is stateless and state matching is the default in PF 4.x:

pass in quick inet proto tcp from any port >= 1024 to any no state

Cisco IOS access list statement looks like this:

Working with Objects

115

ip access-list extended e1_1_in
!
! Rule 0 (global)
!
 permit tcp any gt 1024 any
exit

5.3.3.1.3. Established

Some of the supported firewalls understand special flag "established" intended to match reply packets
of the TCP session. Stateless systems, such as Cisco IOS extended access lists, match combination of
tcp flags where flag "ACK" is set but flag "SYN" is cleared when this keyword is used in the acl rule.
Stateful firewalls such as iptables or PF offer much better way to track and match reply packets because
they can follow the states a tcp session goes through when it is opened, data transferred and finally session
is closed. Firewall Builder provides an option of using flag "established" but supports it only for those
firewall platforms where there is no better alternative. An attempt to use a TCP service object with this
flag set in rules for a firewall that supports stateful inspection causes an error.

Here is an example of the TCP service object with flag "Established" set and source port range "80-80",
that is, this object describes TCP packets coming from the web server operating on the standard port 80
back to the client.

Figure 5.115.

Using this object in a rule:

Figure 5.116.

Here is the access list generated for Cisco IOS:

ip access-list extended e1_0_in
!
! Rule 0 (global)
!
 permit tcp any eq 80 any established
!

Here we have source port specification "eq 80" and keyword "established"

Working with Objects

116

Attempt to compile this rule for iptables or PF causes an error:

Error (pf): TCPService object with option "established" is not supported
 by firewall platform "pf". Use stateful rule instead.

5.3.4. UDP Service

The UDP service object is a generalization of the UDP protocol, which is a connectionless transport layer
protocol. Many well-known applications use UDP as their transport, such as DNS (Domain Name Sys-
tem), DHCP (Dynamic Host Configuration Protocol), NTP (Network Time Protocol), and SNMP (Simple
Network Management Protocol).

As in TCP, UDP uses port numbers to distinguish applications from one another. The UDP packet header
carries two port numbers: the source port and the destination port. The UDP service object in Firewall
Builder allows for a definition of ranges for both the source and the destination ports. The meaning of
values assigned to the start and end of the range is the same as in the TCP service object: ranges are
inclusive, that is, both start and end ports of the range are included. Using "0" for both the start and end of
the range means "any port". These rules work for both the source and destination ranges. The following
screenshot shows the "dns" UDP Service object that represents the Domain Name System protocol, which
uses destination port 53.

Figure 5.117.

Objects in the Standard set of service objects are not editable. However, you can copy and paste a copy of
a service object into the User tree and edit it there, or you can right-click the ICMP folder in the User tree
and select New ICMP Service to create a service object from scratch.

The UDP Service dialog provides the following controls:

• Name: This is the name of the object

• The Source port range: These two controls define the start and the end of the source port range. They
accept values 0 through 65535.

• The Destination port range: These two controls define the start and the end of the destination port range.
They accept values 0 through 65535.

• Comments: This is a free-style text field used for comments.

Working with Objects

117

5.3.4.1. Using UDP Service in Rules

5.3.4.1.1. Single Destination UDP port

In this example we'll use the UDP service object "domain" shown on screenshot above. The rule looks
like this:

Figure 5.118.

Here is iptables command generated for this rule:

Rule 0 (global)

$IPTABLES -A FORWARD -i + -p udp -m udp --dport 53 -m state --state NEW -j ACCEPT

This rule got a "-i +" clause because direction was set to Inbound but "Interface" column was left empty.
To enforce inbound direction compiler uses "-i" option but since interface was not specified, the rule got
attached to all interfaces which is defined by the +.

Here is the generated PF 4.x configuration:

Rule 0 (global)

pass in quick inet proto udp from any to any port 53

In the pf configuration, direction is defined by the "in" keyword, and since no interface was requested,
there is no "on <interface>".

The generated Cisco access list statement is quite trivial:

ip access-list extended fe0_0_in
!
! Rule 0 (global)
!
 permit udp any any eq 53
!
exit

5.3.4.1.2. Source Port Range

The following UDP service object defines source port range of the ports with values greater than or equal
to 1024:

Working with Objects

118

Figure 5.119.

Using this object in policy rule yields the following code for iptables:

Rule 0 (global)

$IPTABLES -A FORWARD -i + -p udp -m udp --sport 1024:65535 -m state \
--state NEW -j ACCEPT

And for PF:

Rule 0 (global)

pass in quick inet proto udp from any port >= 1024 to any

The Cisco access list statement:

ip access-list extended e1_0_in
!
! Rule 0 (global)
!
 permit udp any gt 1024 any
!
exit

5.3.5. User Service

User service object matches the owner of the process on the firewall that send the packet. It translates to
the "owner" match in iptables and "user" parameter for PF.

Working with Objects

119

Figure 5.120. User Service Dialog

• Name:

This is the name of the object
• User id

The user ID of the user account on the firewall device that the firewall should use to match packets.
• Comments:

This is a free-style text field used for comments.

The user service object has only one parameter besides the name and comment: it is the user ID that the
firewall should use to match packets.

The user service object is only supported for iptables and PF.

Let's look at how the simple rule shown in Figure 5.121 compiles for iptables and PF.

Figure 5.121. User Service Rule Example

The firewall can associate a packet with a user only if the packet originated on the firewall. Packets that
transit the firewall have no information about the user who owned the process that created these packets
and sent them out because this process ran on an entirely different computer. For this reason, the object
in the Source column must be the firewall.

Figure 5.122. User Service, iptables Compile Output

Rule 0 (global)

$IPTABLES -A OUTPUT -m owner --uid-owner 500 -j DROP

Working with Objects

120

The user service translated into the owner match for iptables. See the iptables man page for a more detailed
explanation of this match.

Figure 5.123. User Service, PF Compile Output

Tables: (1)
table { en0 , 192.168.1.1 }

Rule 0 (global)

block out quick inet from to any user 500

Here the table tbl.r0.s was created to hold IP addresses that belong to the firewall. The rule matches source
addresses and also the user ID of the owner using the "user" clause.

The user service object is actually one of the simplest service object types in Firewall Builder, but it
provides the facility for a basic per-user control on Linux and BSD machines. This service object can
be used in rules with actions that reroute packets ("Route" action) or in the NAT rules; for example, to
redirect web access via proxy.

5.3.6. Custom Service
The custom service object can be used to inject arbitrary code into the generated firewall script. Any
combination of options allowed in the target firewall command line language that does not fit into a strict
model of standard service object types can be expressed using the custom service object. For example,
iptables comes with a collection of modules that adds an ability to match complex combinations of packet
parameters or header fields that are not supported by a standard code. One of the modules adds the ability
to match any string in the packet's payload which can be quite useful to quickly build firewall rule to
block some new protocol that uses non-specific combination of ports and other parameters. This ability is
sometimes used to write rules to block network trojans or viruses with known signatures.

The following screenshot represents a custom service object that uses the capabilities of the string module.
Command-line options specific for this module are in the "Code String" field.

Note

Note: The code specified in the custom service object is used literally; no validation is done either
by the Firewall Builder GUI or the policy compilers.

Figure 5.124.

Working with Objects

121

The Custom Service dialog provides the following controls:

• Name: This is the name of the object.

• Platform: This is a pull-down menu that shows a list of all firewall platform targets available in Firewall
Builder.

• Code String: This is a line of code in the target firewall language. (This is the heart of the custom service
object.)

• Protocol Name: Use this option if you want to restrict the custom service object to a particular protocol:
TCP, UDP, or ICMP. Default is "any". For example, if this field is set to "tcp", then policy compiler for
iptables generates command with parameter "-p tcp" and then inserts code defined in the "Code String"
field of the custom service object.

• Address Family: Specify IPv4 or IPv6. Policy compilers use information about address family to prop-
erly use the object while compiling IPv4 or IPv6 rule sets.

• Comments: This is a free-style text field used for comments.

5.3.6.1. Using Custom Service Object in Rules

The following example uses iptables module "recent". Quoting from the iptables manual, this module
"allows you to dynamically create a list of IP addresses and then match against that list in a few different
ways". We can use this module to throttle brute-force ssh scanning attacks where an attacker repeatedly
connects to the ssh daemon trying to guess login name and password. The full explanation of how to use
the custom service object in combination with swatch script on Linux to stop these attacks can be found
in the Firewall Builder Cookbook (Chapter 14). Here we focus only on the Custom Service object and
iptables rules that can be obtained with it.

Figure 5.125.

The code string defined in this object is "--dport 22 -m recent --set". This matches port 22 (ssh), activates
the module and adds source address of the packet to the default list maintained by the module.

The second custom service object also matches port 22 and checks if the address is already on the list and
was seen during the past one minute twice:

Working with Objects

122

Figure 5.126.

Note that our goal is to match protocol SSH (tcp port 22) and at the same time activate iptables module
"recent" and add some parameters for it. Both are done by means of a service object in Firewall Builder;
however placing two service objects in the "Service" field of a rule joins them by a logical OR operation.
That is, if we were to put TCP service object "ssh" and custom service object that defines parameter for
module "recent" in the "Service" field of the same rule, we would end up with two iptables commands,
one matching tcp port 22 and another trying to use module "recent". Since we need to match both in the
same rule, we have to add "--dport 22" to the code defined in the custom service object.

Now, the rules using these objects:

Figure 5.127.

Here are the iptables commands generated for these two rules:

Rule 0 (global)

$IPTABLES -N In_RULE_0
$IPTABLES -A INPUT -i + -p tcp -m tcp --dport 22 \
 -m recent --rcheck --seconds 60 --hitcount 2 -j In_RULE_0
$IPTABLES -A In_RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A In_RULE_0 -j DROP

Rule 1 (global)

$IPTABLES -A INPUT -i + -p tcp -m tcp --dport 22 -m recent --set \
 -m state --state NEW -j ACCEPT

First, we match port 22 and check if we have seen this source address during the past minute at least
2 times. If yes, module "recent" returns a match and the packet matches the first iptables rule. Iptables
passes control to the rules in chain "In_RULE_0" where the packet is logged and dropped. If the packet
does not match the conditions set for the module "recent", it does not match the first iptables rule and will
be inspected by the next one (generated for the original rule #1). If this is the opening packet of a new
session, it matches state "NEW" and will be permitted. Since module "recent" was also called in this rule,

Working with Objects

123

the source address of the packet was added to the internal table of the module "recent" so it can be used
in the previous iptables rule.

The custom service object allows you to inject arbitrary strings into the generated firewall configuration
in the place where port matching normally occurs. Another feature in Firewall Builder that also allows for
insertion of a code in the generated code is the custom action feature. The combination of custom service
with custom action provides for a very flexible system where you can compose pretty much any required
configuration line if it is not otherwise supported by the standard means. Suppose instead of just dropping
SSH scan connections coming to our system, we want to slow them down, thus tying up the attacker's
resources. Iptables has a target just for that called TARPIT. This target is specific for iptables and does not
exist on the other firewalls supported by Firewall Builder and there is no standard action for it. You can
use the custom action mechanism to generate an iptables command with this target. In the rule, the action
in it is set to "Custom Action". Double-clicking the action in the rule opens a dialog with its parameters (if
any). The custom action object has one parameter: a free-form string where you enter the code you want
to appear in the generated command:

Figure 5.128.

Here is what we now get when we compile this policy for iptables:

Rule 0 (global)

$IPTABLES -N In_RULE_0
$IPTABLES -A INPUT -i + -p tcp -m tcp --dport 22 \
 -m recent --rcheck --seconds 60 --hitcount 2 -j In_RULE_0
$IPTABLES -A In_RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- CUSTOM "
$IPTABLES -A In_RULE_0 -j TARPIT

Rule 1 (global)

$IPTABLES -A INPUT -i + -p tcp -m tcp --dport 22 -m recent --set \
 -m state --state NEW -j ACCEPT

Now the first rule ends up sending the packet to the "TARPIT" target rather than to "DROP", which is
what we wanted.

5.4. Time Interval Objects
Time interval objects allow you to create a rule that only matches during certain periods of time, such as
on weekend days, during work hours, or other periods. Time intervals operate based on the time as known
by the firewall device.

Working with Objects

124

Figure 5.129. Time Interval Dialog

Time intervals can be certain days of the week (only on Mondays, for example), only certain times, and/
or only during a certain range of dates. You can combine these options to create an object that represents,
for example, Tuesday afternoons from 1 to 3 PM during March of 2011.

• Name:

This is the name of the object.
• Start date checkbox:

Indicates that the time interval has a starting date. If this is not checked, the Start date field is inaccessible
and is not included in the object.

• Start date:

Indicates the day the time interval will start.
• Start time:

Indicates the beginning of the daily interval. Only applies to days after Start date (if specified) and before
End date (if specified) and on indicated days of the week. For example, if Sunday is not checked, then
the time interval does not apply on Sundays.

• End date checkbox:

Indicates that the time interval has an ending date. If this is not checked, the End date field is inaccessible
and is not included in the object.

• End date:

Indicates the day the time interval will end.
• End time:

Indicates the end of the daily interval. Only applies to days after Start date (if specified) and before End
date (if specified) and on indicated days of the week. For example, if Sunday is not checked, then the
time interval does not apply on Sundays.

• Mon, Tue, Wed, Thu, Fri, Sat, Sun

Indicates on which days of the week the time interval should be applicable. For example, if Mon is
checked and Tue is not, then the time interval object will apply to Mondays, but not Tuesdays.

• Comments:

This is a free-style text field used for comments.

Working with Objects

125

In Figure 5.129, the object would be valid from the beginning of Dec. 19, 2009 and end the beginning of
Jan. 4, 2010. This might correspond, for example, to a "winter break" at some institution when access to
some networks could be restricted.

Another possibility is to limit recreational activities to non-work hours.

Figure 5.130. Time Interval Rule Example

In this rule, the "quake" protocol is allowed from the internal network after hours and during weekends.
Otherwise, the final "deny all" rule in the rule set would prevent it during other times (during work hours).

5.5. Object Keywords
Keywords can be added to all object types and help you quickly find and organize the objects in your
object tree. To set the keywords for an individual object open the object for editing and then click on the
Keywords button in the lower right corner of the Editor panel.

For an example of how you could use Keywords, let's assume that you have two datacenters, one in New
York (NY) and one in London (LON). For objects that represent items in the datacenter you could add
a keyword, called "datacenter", to each of the objects. You could also add another keyword, for example
"trusted" or "DMZ", to identify the security zone of the object.

Figure 5.131 shows the editor panel for an object called NY Datacenter-Net-1.

Figure 5.131. Datacenter Network Object

Click the Keywords button to set the keywords for the active object. This will bring up the dialog window
shown in Figure 5.132.

Working with Objects

126

Figure 5.132. Keywords Dialog

As you can see no Keywords have been configured yet, so there are no existing keywords that can be
assigned to the object. To create a new keyword type the name of the keyword in the text box labeled
"New Keyword:".

In this example we want to add the "datacenter" and "trusted" keywords to the network object. Figure 5.133
shows the dialog after the keywords have been entered. Click OK to apply the keywords to the object.

Figure 5.133. Keywords Dialog After Creating Some Keywords

Note

After you apply keywords to an object the keywords will be displayed in the Editor panel next
to the Keywords button.

Working with Objects

127

What if you have a lot of objects that need to have the same keywords applied? To apply a keyword to
muliple objects at the same time select the objects in the tree, remember to use the CTRL or Shift keys to
select more than one object, right-click on the selected objects and select Keywords, then Add and then
select the keyword you want to apply. Figure 5.134 shows applying the "datacenter" keyword to multiple
Network objects.

Figure 5.134. Applying Keywords to Multiple Objects at Once

You can also remove keywords from multiple objects by selecting multiple objects, right-clicking and
selecting Keywords -> Remove and then selecting the keyword that you want to remove.

After you have configured keywords for your objects you can type the keyword into the filter box at the
top of the object tree and only the objects that match that keyword, or have an object name that matches
the keyword, will be displayed.

Figure 5.135 shows the filtered view after the "datacenter" keyword has been typed into the filter box.

Working with Objects

128

Figure 5.135. Filtering Based on Keyword - datacenter

Another example is shown in Figure 5.136 where all the objects are being filtered for the "trusted" keyword.
Only objects that have had the "trusted" keyword applied will be displayed. In this example only one of
the two networks at each datacenter is considered trusted.

Figure 5.136. Filtering Based on Keyword - trusted

5.6. Creating and Using a User-Defined Library
of Objects

The User library that comes with Firewall Builder is all you need if you are the only person administering
firewalls in your enterprise. If you have several administrators, however, each with a different workstation,
then you may want to create a user library that you can distribute. That way, user-defined objects can be
created once, by one person.

Let's create and distribute a simple user-defined library. Start by selecting the New Object/New Library
option from the Object menu.

Working with Objects

129

The library pull-down menu switches to New Library. This library is empty by default except for the
standard folders.

Figure 5.137. A New, Rmpty User-Defined Library

Click the New Library icon to bring up the library dialog.

Figure 5.138. Library Dialog

The Library dialog has three controls: Name, Color, and Comments. Enter a new name for the library in
the Name field. (Here we are calling it ACME Library.) If you want, you can also specify a color for the
library. This helps you easily distinguish one library from another when you are working. In this case, we
have set the color to a shade of blue.

Figure 5.139. ACME Library with Blue Background

Use the normal object creation procedures to create objects in the library. Here we have created two Ad-
dress objects that represent web servers, a host object with two interfaces that matches an email server and
a network object to match the local LAN.

Working with Objects

130

Figure 5.140. Library with User-Created Objects

Click File/Save to save the object file.

To export the library to a file, select File/Export Library. The following dialog appears:

Figure 5.141. Export Your Library

If you want to make the library read-only, leave the Make exported libraries read-only checked. Otherwise,
uncheck it.

Working with Objects

131

Click OK.

A file system Save dialog appears. Here you can specify a name and location for the file. Be sure the file
has a .fwl file extension.

Figure 5.142. Save Dialog Box

You can now move or e-mail the library to someone else.

To load a library, copy the file to the directory where you have Firewall Builder store your object files.
Then, select Import Library from the Firewall Builder File menu. (You may have to restart Firewall Builder
to get it to locate the file. Until then, the "Import Library" option may be grayed out.)

You can now use this library like any other library. Keep in mind that changes to one copy of the user-
defined library has no effect on other copies. To propagate changes, you have to redistribute the library.

5.7. Finding and Replacing Objects
Imagine you have an access policy that looks something like this:

Working with Objects

132

Figure 5.143. Policy Before the Find/Replace

Further, imagine that you are reassigning all the IP addresses in 192.168.2.0/24 to be in the 192.168.3.0/24
subnet and that you need to modify the firewall rules to match.

One way to handle this is to manually browse through every rule in your firewall, removing the .2.0
addresses where you find them and replacing them with the equivalent .3.0 addresses. Or, you could do
a Find and Replace operation.

Select Find Object from the Object menu to open the Find and Replace dialog, shown here:

Figure 5.144. Find/Replace Dialog

To replace every net-192.168.2.0 object with the net-192.168.3.0 object, first create the new network ob-
ject. Then, drag (or Copy/Paste) a net-192.168.2.0 object into the Find object field and the net-192.168.3.0
object into the Replace object field. Then, set the Scope for search and replace pull-down menu to policy
of the opened firewall, as shown here:

Working with Objects

133

Figure 5.145. Objects to Find and Replace

Click Replace All to replace all instances.

Figure 5.146. Policy with Objects Replaced

The Find object dialog has a number of controls you can use to constrain your searches:

• Object parameter pull-down menu

Allows you to specify how you search for objects. You can search by name (usable on all objects),
address (usable on all addressable objects), TCP/UDP port (usable on TCP and UDP objects), Protocol
Number (usable on IP service objects) and ICMP type (usable on ICMP service objects).

• Text field

The text field is populated automatically if you drag an object into the Find object field. Otherwise, you
can type the text in manually.

• Use regular expressions

Checking the Use regular expressions checkbox causes the text field to be interpreted as a Perl regular
expression. You can only do searches based on a regular expression. You cannot do replaces based on
a regular expression.

• Search field

Drag an object into the field to find instances of that object.

Working with Objects

134

• Replace field

Drag an object into the field to use it as the replacement object in a search and replace.

• Scope of search and replace

Allows you to specify whether a search or search and replace will cover just the object tree, the tree
and the policies of all firewalls in the object file, just the policies in the object file, or just the current
open policy.

• Buttons

The Next button finds the next instance of the object. It does not do a replace. Replace All replaces
all instances of the object in the given scope. Replace replaces the current instance. Replace & Find
replaces the current instance and jumps to the next one.

135

Chapter 6. Network Discovery: A Quick
Way to Create Objects

One of the distinguishing features that Firewall Builder provides is support for automated object creation.
This helps populate the objects tree for large networks with lots of hosts and subnets. What might take
hours to do manually, the Discovery Druid wizard can help you do in minutes.

To start the Discovery Druid, select Tools/Discovery Druid.

The Discovery Druid supports three main methods for automated object creation:

• Reading the /etc/hosts file
• Performing network discovery using SNMP queries
• Importing the configuration of a firewall or router

You choose the method on the first page of the Druid (Figure 6.1.)

Figure 6.1. Calling the Object Discovery Druid

Just check the radio button next to the method you want to use and click Next.

Network Discovery: A
Quick Way to Create Objects

136

6.1. Reading the /etc/hosts file
This method imports the host records present in the standard /etc/hosts file or any other file that contain
records in the following format (this format is actually described in the manual page hosts(5)).

IP_Address host_name

The IP address must be separated from the host name with any number of spaces or tab symbols. Lines
starting with '#' are considered comments and are ignored.

When you choose the import from /etc/hosts on the first page, the Druid asks you for the file path and
name on the next page. Once that information is entered, it reads the contents of that file and presents a
table of new networks (Figure 6.2).

Figure 6.2. Choosing the File for Import

Once you have chosen the file, click Next to let the program read and parse it. The file should be in "/etc/
hosts" format; that is it should have an address and host name on each line, separated by any number of
white spaces. Here is an example:

Network Discovery: A
Quick Way to Create Objects

137

192.2.0.1 test1
192.2.0.2 test2
10.1.1.2 serv2
10.1.1.3 serv3

Figure 6.3. Parsing a File in Hosts Format

Once the program finishes importing, you can click Next to move on to the next page where you can
choose which of the addresses you want to use:

Network Discovery: A
Quick Way to Create Objects

138

Figure 6.4. Choosing the Addresses To Be Used

You can select any number of addresses in the left panel and use buttons "-->" and "<--" to add or remove
them to the panel on the right. The "Select All" and "Unselect All" buttons help to work with large lists
of addresses.

Network Discovery: A
Quick Way to Create Objects

139

Figure 6.5. Choosing the Addresses To Be Used

Choose the object library where new address objects should be created on the next page:

Network Discovery: A
Quick Way to Create Objects

140

Figure 6.6. Choosing the Object Library

Once you click Finish, object are created and shown in the tree:

Network Discovery: A
Quick Way to Create Objects

141

Figure 6.7. New Address Objects in the Tree

6.2. Network Discovery
Another powerful way to find addresses of subnets and hosts on the network is to use the SNMP crawler.

Network Discovery: A
Quick Way to Create Objects

142

Figure 6.8. Initial Parameters for the Network Discovery Program

The Network Discovery program (sometimes referred to as the "Network Crawler") needs a host from
which to start. This host is called the "seed host"; you enter it in the first page of the Druid (Figure 6.8).
The crawler implements the following algorithm (this is a somewhat simplified explanation):

First, it runs several SNMP queries against the seed host trying to collect the list of its interfaces and its
ARP and routing tables. This host is then added to the table of discovered network objects, together with
the host's interfaces, their addresses and netmasks, and the host's "sysinfo" parameters. Then the crawler
analyses the routing table of that host; this allows it to discover the networks and subnets, which in turn
are also added to the list of discovered objects. Then it analyses the ARP table, which holds MAC and IP
addresses of neighboring hosts. It takes one host at a time from this table and repeats the same algorithm,
using the new host as a seed host. When it pulls an ARP table from the next host, it discards entries that

Network Discovery: A
Quick Way to Create Objects

143

describe objects it already knows about. However, if it finds new entries, it tries them as well and thus
travels further down the network. Eventually, it will visit every host on all subnets on the network.

This algorithm relies on hosts answering SNMP queries. If the very first host (the "seed" host) does not run
an SNMP agent, the crawler will stop on the first run of its algorithm and won't find anything. Therefore,
it is important to use a host which does run an SNMP agent as a "seed" host. Even if most of the hosts
on the network do not run SNMP agents, but a few do, the crawler will most likely find all of them. This
happens because it discovers objects when it reads the ARP tables from the host which answers; so even
if discovered hosts do not answer to SNMP queries, the crawler can discover them.

One of the ways to limit the scope of the network that the crawler visits is to use the "Confine scan to the
network" parameter. You need to enter both a network address and a netmask; the crawler will then check
if the hosts it discovers belong to this network and if they do not, discard them.

Network Discovery: A
Quick Way to Create Objects

144

Figure 6.9. Parameters for Network Discovery: Page 1

Network Discovery: A
Quick Way to Create Objects

145

Figure 6.10. Parameters for Network Discovery: Page 2

There are a few settings that affect the crawler's algorithm (see Figure 6.9 and Figure 6.10). Here is the list:

• Run network scan recursively

As was described above, the crawler starts with the "seed" host and then repeats its algorithm using
every discovered host as a new "seed". If this option is turned OFF, then the crawler runs its algorithm
only once and stops.

• Follow point-to-point links

If a firewall or router has a point-to-point interface (for example, PPP interface), then the crawler can
automatically calculate the IP address of the other side of this interface. It then continues the discov-

Network Discovery: A
Quick Way to Create Objects

146

ery process by querying a router on the other side. Very often, the point-to-point link connects the
organization's network to an ISP and you are not really interested in collecting data about your ISP net-
work. By default, the crawler does not cross point-to-point links, but this option, if activated, permits it.

• Include virtual addresses

Sometimes servers or routers have more than one IP address assigned to the same interface. If this option
is turned on, the crawler "discovers" these virtual addresses and tries to create objects for them.

• Run reverse name lookup queries to determine host names

If a host discovered by the crawler answers to SNMP queries, it report its name, which the crawler uses
to create an object in Firewall Builder. However, if the host does not answer the query, the crawler
cannot determine its name and only knows its IP address. The crawler can use DNS to back-resolve
such addresses and determine host names if this option is turned ON.

• SNMP (and DNS) query parameters

You must specify the SNMP "read" community string to be used for SNMP queries. You can also
specify the number of retries and a timeout for the query. (The number of retries and timeout parameters
also apply to DNS and reverse DNS queries.)

Once all parameters are entered, the crawler actually gets to work, which may take a while. Depending
on the size of the network and such parameters as the SNMP timeout value, scanning may take minutes
or even hours. The progress of the scanner can be monitored on the page in the Druid (Figure 6.11) and
(Figure 6.12). You can always stop the crawler using the "Stop network scan" button. Data does not get
lost if you do this as the Druid will use whatever objects the crawler discovered before you stopped it.

Network Discovery: A
Quick Way to Create Objects

147

Figure 6.11. The SNMP Crawler Status

Network Discovery: A
Quick Way to Create Objects

148

Figure 6.12. The SNMP Crawler Status (More)

The "Save scan log to file" button saves the content of the progress window to a text file and is mostly
used for troubleshooting and bug reports related to the crawler.

If the crawler succeeded and was able to collect information it needed to create objects, you can switch
to the next page where you choose and create objects.

Network Discovery: A
Quick Way to Create Objects

149

Figure 6.13. Creating Networks Using Gathered Information

This part of the Druid is the same for all discovery methods.

The left column shows the networks that were discovered. The right column shows the network objects
that will be created. To start with, the right column is empty.

This page of the Druid also has the following buttons:

• Select All

Selects all records in the column.
• Unselect All

Network Discovery: A
Quick Way to Create Objects

150

Deselects all records in the column.

• Filter

Brings up a filter dialog. Filtering helps manage long lists of objects.

• Remove Filter

Removes the currently applied filter and shows all records in the table.

The Druid can filter records in the table either by their address, by their name, or by both. To filter by
address enter part of it in the "Address" field. The program compares the text entered in the filter dialog
with an address in the table and shows only those records whose address starts with the text of the filter.
For example, to only filter out hosts with addresses on the net 10.3.14.0 we could use the filter "10.3.14".
Likewise, to remove hosts "bear" and "beaver" (addresses 10.3.14.50 and 10.3.14.74) we could use the
filter "10.3.14.6". Note that the filter string does not contain any wildcard symbols like "*". The filter
shows only records that have addresses which literally match the filter string.

Filtering by the object name uses the POSIX regular expressions syntax described in the manual page
regex(7). For example, to find all records whose names start with "f" we could use the regular expression
"^f". The "^" symbol matches the beginning of the string, so this regular expression matches any name that
starts with "f". To find all names that end with "somedomain.com", we could use the regular expression
".*somedomain.com$"

Once you have reviewed the discovered networks, decide which ones you want to turn into Network
objects. Then, copy those networks to the right column.

To populate the right column with objects, select the networks you want, then click the right arrow (-->)
to put them in the right column.

Network Discovery: A
Quick Way to Create Objects

151

Figure 6.14. Creating Networks Using Gathered Information (more)

Click Next. The discovered hosts list displays:

Network Discovery: A
Quick Way to Create Objects

152

Figure 6.15. Creating Hosts Using Gathered Information

Again, populate the right column with the objects you want to create:

Network Discovery: A
Quick Way to Create Objects

153

Figure 6.16. Creating Hosts Using Gathered Information (More)

Click Next. The final object list displays:

Network Discovery: A
Quick Way to Create Objects

154

Figure 6.17. List of Objects

Here you can specify which type of object will be created for each discovered item: address, host, or
firewall. Here, we are changing the object "sveasoft (10.3.14.202)" from a host to a firewall:

Network Discovery: A
Quick Way to Create Objects

155

Figure 6.18. Specify Type of Object

Click Next. The target library control appears:

Network Discovery: A
Quick Way to Create Objects

156

Figure 6.19. Target Library

Here you can specify which library the objects will appear in. Normally this would be User, unless you
have created a user-defined library. Click Next.

The wizard finishes processing, and your new objects appear in your library:

Network Discovery: A
Quick Way to Create Objects

157

Figure 6.20. Target Library

6.3. Importing Existing Firewall Configurations
into Firewall Builder

Existing firewall configurations can be imported into Firewall Builder using the Import Firewall wizard.
Import is supported for the following platforms.

• iptables

• Cisco IOS router access-lists

Network Discovery: A
Quick Way to Create Objects

158

• Cisco ASA / Cisco PIX (requires Firewall Builder V4.2 or greater)

• PF

6.3.1. Importing Existing Firewall Configurations

To start the Import Firewall wizard select the File -> Import Firewall menu item. This launches the wizard
as shown in Figure 6.21.

Figure 6.21. Main Import Firewall Wizard

To start the import process, use the Browse function to select the file that contains the firewall configuration
that you want to import.

Note

iptables

The configuration file format must be in the iptables-save format. For example, run the "ipta-
bles-save > myfirewall.conf" command on the firewall you want to import, transfer that file to
the system running the Firewall Builder application and select this file in the import wizard.

Cisco IOS router access-lists

Cisco IOS router access-lists must be in the format displayed when the "show run" command is
executed. Copy the output from the "show run" command to a file on the system that Firewall
Builder is running on.

Network Discovery: A
Quick Way to Create Objects

159

Cisco ASA / Cisco PIX

Cisco ASA and Cisco PIX configurations must be in the format displayed when the "show run"
command is executed. Copy the output from the "show run" command to a file an the system that
Firewall Builder is running on.

PF

PF configurations must be in a single pf.conf configuration file, Firewall Builder does not support
anchors with external files. All configurations must make use of the "quick" keyword. For more
information see Section 6.3.3.

After you have selected the configuration file to import click on the Continue button.

Firewall Builder will automatically detect the type of configuration file that is being imported and will
display a preview of the file in the window.

Figure 6.22. Import Firewall Wizard - Configuration Preview

Click the Continue button. On the next page, shown in Figure 6.23, enter a name for the firewall object
that will be created.

Network Discovery: A
Quick Way to Create Objects

160

Figure 6.23. Import Firewall Wizard - Set Firewall Name

Note

By default, the option to "Find and use existing objects" is enabled. When this option is enabled
Firewall Builder will attempt to match elements in in the firewall's configuration file with objects
that are already configured in the Firewall Builder object tree. This includes both Standard Library
objects and objects the user has created.

For example, if an imported firewall configuration file has an object or rule that uses TCP port 22,
SSH, Firewall Builder will match that to the pre-existing Standard ssh object instead of creating
a new TCP service object.

After entering the firewall object name, click Commit. Firewall Builder will show a log of the import
process and will include any warning messages in blue colored text and any error messages in red colored
text.

Network Discovery: A
Quick Way to Create Objects

161

Figure 6.24. Import Firewall Wizard - Import Process Log

Depending on the platform, this will either be the final step of the wizard or the user will be guided through
platform specific configuration activities.

Cisco ASA/PIX/FWSM

Note

Firewall Builder will not properly import objects whose names start with a number instead of a
letter. For example, an object group with the name "10-net" will not be imported, but the object
group with the name "net-10" will be imported.

6.3.2. iptables Import Example

For this example we are going to import a very basic iptables configuration from a firewall that matches
the diagram in Figure 6.25.

Network Discovery: A
Quick Way to Create Objects

162

Figure 6.25. Firewall Example

Firewall Builder imports iptables configs in the format of iptables-save. Script iptables-save is part of
the standard iptables install and should be present on all Linux distribution. Usually this script is installed
in /sbin/.

When you run this script, it dumps the current iptables configuration to stdout. It reads iptables rules
directly form the kernel rather than from some file, so what it dumps is what is really working right now.
To import this into Firewall Builder, run the script to save the configuration to a file:

iptables-save > linux-1.conf

As you can see in the output below, the linux-1.conf iptables configuration is very simple with only a few
filter rules and one nat rule.

Completed on Mon Apr 11 21:23:33 2011
Generated by iptables-save v1.4.4 on Mon Apr 11 21:23:33 2011
*filter
:INPUT DROP [145:17050]
:FORWARD DROP [0:0]
:OUTPUT DROP [1724:72408]
:LOGDROP - [0:0]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -i eth1 -s 10.10.10.0/24 -d 10.10.10.1/32 -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT
-A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -o eth0 -s 10.10.10.0/24 -p tcp -m tcp --dport 80 -m state --state NEW -j ACCEPT
-A FORWARD -o eth0 -s 10.10.10.0/24 -p tcp -m tcp --dport 443 -m state --state NEW -j ACCEPT
-A FORWARD -j LOGDROP
-A LOGDROP -j LOG
-A LOGDROP -j DROP
COMMIT
Completed on Mon Apr 11 21:23:33 2011
Generated by iptables-save v1.4.4 on Mon Apr 11 21:23:33 2011
*nat
:PREROUTING ACCEPT [165114:22904965]
:OUTPUT ACCEPT [20:1160]
:POSTROUTING ACCEPT [20:1160]
-A POSTROUTING -s 10.10.10.0/24 -o eth0 -j MASQUERADE
COMMIT
Completed on Mon Apr 11 21:23:33 2011

If you are running Firewall Builder on a different system than the one that is running iptables copy
linux-1.conf from the firewall to the system where Firewall Builder is running.

Network Discovery: A
Quick Way to Create Objects

163

Launch the Import wizard by selecting the File -> Import Firewall menu item.

Click Browse to find linux-1.conf.

Figure 6.26. Select File containing iptables-save data

Click Continue to move to the next window which shows a preview of the configuration file that will be
imported and the type of firewall that Firewall Builder has detected it to be.

Figure 6.27. Preview showing detected platform and configuration data

Next you need to enter a name for the firewall. This is the name that will be used in Firewall Builder to refer
to the firewall after it is imported. When you click the Commit button the configuration data will be read.

Network Discovery: A
Quick Way to Create Objects

164

By default, Firewall Builder attempts to detect if there are items, like IP addresses, used in the rules that
match existing items in the object tree. If there is a match the existing item is used, if there is no match
a new object is created. This feature can be disabled by unchecking the box next to "Find an use existing
objects" which will result in objects being created for evry item used in the imported rules regardless of
whether it already exists in the object tree or no.

Figure 6.28. Entering the Name of the Firewall

After the import is complete, Firewall Builder displays a log showing all the actions that were taken during
the import. Warning messages are displayed in blue font and Error messages are displayed in red.

Figure 6.29. Import Log with Status and Warning/Error Messages

Network Discovery: A
Quick Way to Create Objects

165

The program tries to interpret the configuration file rule by rule and recreates the equivalent rule in Firewall
Builder. The progress window displays warning and error messages, if any, as well as some diagnostics
that shows network and service objects created in the process.

Note

Firewall Builder detected that there are rules in the iptables configuration that allow RELATED
and ESTABLISHED traffic through the firewall. This behavior can be controlled by a setting in
Firewall Builder, so a warning message is shown.

Click the Done button to complete the firewall import.

After the import is completed, the newly created firewall object will be displayed in the object tree. If you
expand the Objects system folder, as shown in Figure 6.30, you can also see the Address and Network
objects that were created during the import process.

Figure 6.30. Imported Firewall and Created Objects in Object Tree

6.3.2.1. Common iptables Post-Import Actions

After the firewall object is created in the object tree there are typically a few more steps required in order
to be able to manage your firewall configuration using Firewall Builder.

Interfaces

There is not enough information in the iptables configuration for Firewall Builder to deterministically
determine what interfaces and IP addresses are configured on the firewall. During the import if a rule
contains either "-i" or "-o" interface references Firewall Builder will add the interface to the firewall object,
but some interfaces may not be used in rules and therefore will not be detected.

In the example configuration that was imported for linux-1, both the eth0 and eth1 interfaces were used
in the configuration, so the firewall object includes these interfaces. By default Firewall Builder marks
these interfaces as Unnumbered.

To update the eth0 interface, double-click it to open it for editing. Figure 6.31 shows how to set a label for
the interface and to identify that it should have a static IP address.

Network Discovery: A
Quick Way to Create Objects

166

Figure 6.31. Editing Parameters for eth0

Right-click the interface and select New Address to add an IP address to the interface as shown in Fig-
ure 6.32. Set the IP address and netmask to match your environment.

Figure 6.32. Setting IP Address for eth0

Note

You may also need to add additional interfaces to the firewall object depending on what Firewall
Builder was able to detect from the iptables rules. To add a new interface right-click the firewall
object (in our example linux-1) and select New Interface. Add the interface name and label and
set the type. The default type is Static IP address.

Rules

During the import of the linux-1.conf file. Firewall Builder displayed a warning message that there were
rules defined to allow RELATED and ESTABLISHED traffic to the firewall. Instead of having to explicitly
have a rule for this, Firewall Builder has a configuration option controlling this behavior.

To view the configuration option controlling RELATED and ESTABLISHED traffic double-click on the
firewall object and click on the Firewall Settings button in the Editor Panel. The dialog window will open

Network Discovery: A
Quick Way to Create Objects

167

with the Compiler tab selected. About halfway down the window is the checkbox that controls RELATED
and ESTABLISHED traffic, which is enabled by default.

Figure 6.33. Firewall Settings Option for Controlling RELATED and
ESTABLISHED Traffic

Since the default is to allow RELATED and ESTABLISHED traffic, the imported rules 0 and 2 are not
necessary. To remove these rules right-click the rule number and select Remove Rule.

Figure 6.34. Removing Unnecessary Rules for RELATED and ESTABLISHED

Note

The specific rule numbers will vary based on your configuration, but the rules created for
matching RELATED and ESTABLISHED traffic are identifiable by the use of the predefined
ESTABLISHED objct in the Service field of the rule.

NAT rules

To view the imported NAT rules, double-click the NAT object under the linux-1 object in the tree. In this
example, there is a single source NAT rule that translates inside addresses to the eth0 (outside) interface
of the firewall.

Figure 6.35. NAT Rules

Network Discovery: A
Quick Way to Create Objects

168

User-Defined Chains

If your iptables configuration includes user-defined chains, Firewall Builder will create a new Policy object
for each user chain and will use the Branch feature to jump from the main Policy to the user chain Policy.
In our example linux-1.conf configuration there is a user chain called LOGDROP that has 2 rules. The
first rule logs the packet and the second rule drops it.

To view the rules in the LOGDROP policy, double-click the LOGDROP policy object located under the
linux-1 firewall object. This will open the rules in the Rules Editor as shown in Figure 6.36.

Figure 6.36. Rules in LOGDROP policy

6.3.3. Information Regarding PF Import
Most firewall platforms like iptables, Cisco ASA, etc. are designed based on a first match and exit paradigm
and these firewalls also usually have an implicit "deny all" rule as the last rule in the firewall. This means
that anything that is not explicitly allowed is denied. Firewall Builder is also designed with this approach
and we even add an explicit "deny all" rule as our final entry in the firewall rules to enforce this behavior.

PF is a bit unique in that it does not require first match and exit behavior. You can force match and exit
behavior by using the "quick" keyword, but by default traffic in a PF firewall will traverse all rules and
each time a rule is matched the action or other parameters are updated. Once the entire rule set has been
evaluated the packet is checked to see what parameter values have been set and and the firewall will act
based on those parameters.

When Firewall Builder generates a PF policy, we always use the "quick" command and we add a "block
all" command at the end of the configuration file. This makes PF behave the same way as other firewalls
that we configure which helps to maintain consistency across platforms. The problem that arises is when
we need to import a pf.conf configuration that has "block all" at the top of the configuration and that does
not make use of the "quick" command. Since we don't generate rules this way we don't have a way to
import configurations that use this format.

Example of PF configuration that IS NOT supported

The following is an example of a pf.conf style that cannot be imported into Firewall Builder.

 block in log
 pass out keep state
 pass in on em0 proto tcp from any to self port 22 keep state
 pass in on em0 proto udp from any to self port 53 keep state

Example of PF configuration that IS supported

The following is an example of a pf.conf style that is supported for importing into Firewall Builder.

 pass out keep state
 pass in quick on em0 proto tcp from any to self port 22 keep state
 pass in quick on em0 proto udp from any to self port 53 keep state
 block in log

169

Chapter 7. Firewall Policies
This chapter describes working with policies. Chapter 10 describes compiling and installing a policy.

7.1. Policies and Rules
Each firewall object has several sets of rules associated with it: access policy rules, Network Address
Translation (NAT) rules, and routing rules.

• Access policy rules filter traffic, controlling access to and from the firewall machine and the machines
behind it. An access policy rule set is sometimes just called a "policy."

• NAT rules describe address and port transformations that the firewall should make to packets flowing
through it.

• Routing rules establish static routes in the firewall.

Firewall software varies widely in the way it can process packets. For example, some firewalls perform
address and port transformations first and then apply policy rules, while some others do it the other way
around. There are many other variations and features specific to particular implementations. In Firewall
Builder though, you work with an abstract firewall that looks and behaves the same regardless of the target
firewall platform. You can build and install firewall polices for one platform, then switch the target and use
the exact same policies to generate rules for an entirely different platform. (This assumes both platforms
support the features you need.)

Firewall Builder compensates for differences in implementation between firewall platforms. For example,
Cisco PIX applies its access list rules to the packet before it performs address and port transformations
according to the NAT rules. As a result, a policy rule that controls access to a server behind the firewall
doing NAT should be written using the firewall object instead of the server object. The meaning of such
a rule is not obvious at a glance since you have to keep in mind all the NAT rules as well as remember
that this policy rule controls access not to the firewall machine, but rather to the server behind it. Firewall
Builder takes into account these variations like this by using smart algorithms to transform rules defined
in the GUI into rules that achieve the desired effect in the target firewall platform. Using Firewall Builder,
you write your rules as if NAT translation happens before the access rules are applied.

7.2. Firewall Access Policy Rule Sets
Figure 7.1. Access Policies

Access policy rules provide access control because they define which packets are permitted and which
are denied. A firewall access policy consists of a set of rules. Each packet is analysed and its elements

Firewall Policies

170

compared against elements in the rules of the policy sequentially, from top to bottom. The first rule that
matches the packet has its configured action applied, and any processing specified in the rule's configured
options is performed.

Each rule has a standard set of rule elements against which packet characteristics are compared. These rule
elements, displayed as fields in the rule, include the packet's source address (Source), its destination address
(Destination), its protocol and port numbers (Service), the interface it is passing through (Interface), its
direction of travel (Direction), and the time of its arrival (Time). For example, if a packet entering the
firewall has a source address that matches the object in the Source field of the rule, its destination address
matches the object in the Destination field, its protocol and port numbers match the object in the Service
field, the interface it passes through matches the interface object in the Interface field, its direction matches
that specified in the Direction field, and the time of its arrival matches that specified in the Time field,
then the firewall takes the actions specified in the Action field and applies the options specified in the
Options field. A field where a value of "Any" or "All" is specified is considered to match all packets for
that rule element.

For example, in Figure 7.1, rule #0 is "anti-spoofing": it denies all packets coming through the outside
interface with source address claiming to be that of the firewall itself or internal network it protects. This
rule utilizes interface and direction matching in addition to the source address. Rule #2 says that connection
from the internal network (network object net-192.168.1.0) to the firewall itself (object firewall) using
ssh is allowed (action Accept). The "Catch all" rule #6 denies all packets that have not been matched by
any rule above it. The access policy in Figure 7.1 is constructed to allow only specific services and deny
everything else, which is a good practice.

By default, a rule matches on specified Source, Destination, and Service rule elements, matching all inter-
faces and traffic directions. If you want to restrict the effect of the rule to particular interfaces or traffic
directions, you must specify the restriction in the rule.

7.2.1. Source and Destination
The Source and Destination rule elements allow you to match a packet to a rule based on the packet's
source and destination IP address.

Configure these rule elements by dragging some combination of addressable objects into the field from
the object tree.

• Specify a specific IPv4 address by dragging and dropping an IPv4 address object.

• Specify a specific IPv6 address by dragging and dropping an IPv6 address object.

• Specify all the IP addresses on a host by dragging and dropping a host object.

• Specify a range of IP addresses by dragging and dropping an address range object.

• Specify a particular subnet by dragging and dropping a network object.

• Specify an address configured as DNS "A" record for a given host name by dragging and dropping
DNS name object.

• Specify a set of different object types by simply dragging and dropping multiple addressable objects
into the field.

• Define a group object composed of different address objects and drag and drop the group object into
the field.

Firewall Policies

171

Section 5.2 describes how to work with address objects.

In addition, you can exclude, or "negate," a source or destination address by dragging it into the field,
then right-clicking and selecting Negate from the context menu. In the example presented in Figure 7.2,
the RFC 1918 address range object has been excluded from the rule; as a result, the rule matches any
destination address except addresses within the private address space.

Figure 7.2. Destination Matches Any RFC 1918 IP Address

7.2.2. Service
The Service rule element matches packets based on the packet's IP service, as defined by protocol and port
numbers. To match on a service, drag a service object from the object tree into the Service field. More
information on service objects is available in (Section 5.3.

As in the Source and Destination rule elements, you can exclude, or "negate" a service by dragging its
object to the Service field, then right-clicking and selecting Negate from the context menu.

7.2.3. Interface
The Interface rule element matches packets based on which firewall interface the packet traverses. (Note
that this rule element refers to firewall interfaces, not host interfaces.) By default, all rules created in
Firewall Builder affect all firewall interfaces. (This is true in all target platforms.) For cases where you
want a rule to match on only a particular interface or set of interfaces, you can drag a firewall interface
object or set of firewall interface objects into the field.

7.2.4. Direction
The Direction rule element matches the direction a packet is travelling as it traverses the interface. There
are three traffic direction settings for policy rules:

• A direction of Inbound matches traffic that is ingressing through a firewall interface.

• A direction of Outbound matches traffic that is egressing through a firewall interface.

• A direction of Both matches traffic either ingressing or egressing from the firewall. When you use the
Both direction in a rule and compile the rule, Firewall Builder converts the rule into to two rules: one
for direction Inbound and one for direction Outbound. Firewall Builder then validates each rule to make
sure they both make sense by looking at the defined source and destination addresses, dropping one of
the rules if necessary.

If you build a rule with a firewall object in the Destination field and with direction of Both, the result for
PF platforms should be a rule with pass in, which is equivalent to a direction of Outbound in the original
Firewall Builder rule. For iptables platforms, the rule is placed in the INPUT chain. If the firewall object
is defined in the Source field of the rule, then Firewall Builder automatically changes the direction Both
to Outbound and processes the rule accordingly.

This automatic change of the direction is only performed when the direction is Both. If the direction
is Inbound or Outbound, Firewall Builder complies with the setting without changing the rule. (This is

Firewall Policies

172

how anti-spoofing rules are constructed, for example, because in rules of that kind, the firewall object
and the objects representing addresses and networks behind it are in the Source field, yet the direction
must be set to Inbound.)

Note that traffic direction is defined with respect to the firewall device, not with respect to the network
behind it. For example, packets that leave the internal network through the firewall are considered "in-
bound" on firewall's internal interface and "outbound" on its external interface. Likewise, packets that
come from the Internet are "inbound" on the firewall's external interface and "outbound" on its internal
interface. Figure 7.3 illustrates directions for packets entering or exiting the firewall interface.

Figure 7.3. Traffic Directions

Many supported firewall platforms allow for rules to be written without explicitly specifying a direction
of "in" or "out"; for example, pass quick proto tcp in PF configuration or iptables rules in the FOR-
WARD chain without the -i interface or -o interface clauses. Firewall Builder always tries to use this
construct for rules with direction Both, unless addresses in the source and destination indicate that the rule
can be made more specific.

Figure 7.4. Modifying the Direction of a Policy Rule

7.2.5. Action

The Action is the action taken on a rule that matches on the Source, Destination, Service, Interface, Di-
rection, and Time fields.

The policy rule action can be any of the actions types listed below. Not all firewalls support every action;
however, Firewall Builder is aware of the capabilities of each platform and allows only the options valid
for the specified firewall target. Note also that the same action may be referred to by a different name on
different target platforms.

Some actions have parameters. For these actions, Firewall Builder opens the action dialog when you select
the action for you to specify the setting. To change the parameter setting for an existing action, double-click
the action icon in the Action field or right-click it and select Parameters from the context menu. This opens
the dialog for the action, where you can change the parameter setting.

• Accept:

Firewall Policies

173

Allows the packet through the firewall. No subsequent rules are applied. This action has no parameters.
• Deny:

Silently drops the packet. No subsequent rules are applied. This action has no parameters.
• Reject:

The packet is dropped and the firewall reacts to the packet in the way you specify; for example, the
firewall can send a TCP RST message or one of a number of ICMP messages. No subsequent rules
are applied. This action has one parameter: when you select Reject as the action, the action dialog
automatically opens for you to specify the response to be sent. Figure 7.5 shows the supported responses
for the Reject action.

Figure 7.5. Responses for the Reject Action

• Accounting:

Counts packets matching the rule, but makes no decision on the packet. Even if the packet matches, the
inspection process continues with subsequent rules. For iptables this action has one parameter which is
the name of the rule chain that will be created. Traffic that matches this rule will have a target of the
defined accounting user chain. In this case the traffic is neither accepted nor denied, so in order for the
traffic to be passed through the firewall another rule must be defined with the Action set to Accept.

• Queue:

Supported only for iptables and ipfw target platforms. Passes the packet to a user-space process for in-
spection. It is translated into QUEUE for iptables and the divert for ipfw. This action has no parameters.

• Custom:

Supported for iptables, ipf, and ipfw target platforms. Allows you to specify an abitrary string, for
example defining iptables module 'recent' parameters as shown in Section 5.3.6. This action has one
parameter: when you select Custom as the action, the action dialog automatically opens for you to
specify the custom string.

• Branch:

Supported only for iptables and PF target platforms, which provide suitable syntax for allowing control
to return to the higher-level rule set if the branch cannot make a final decision about the packet. Used to
branch to a different rule set. For iptables, this action is translated into a user-defined chain. The name
of the chain is the name of the Policy rule set object that the branch jumps to. For PF, this action is
translated into an anchor with the same name as the Policy rule set that the branch jumps to. This action
has one parameter: when you select Branch as the action, the action dialog automatically opens for you
with a drop area to drag-and-drop the Policy rule set which will be branched to.

Firewall Policies

174

• Continue:

Continue is, essentially, an empty action. You can use this option when you want to assign an option,
such as logging or packet marking, to a matched packet but take no other action in that rule. This action
has no parameters.

On iptables systems, using just the Continue action results generates a rule that has no -j target defined.
If the action is set to Continue and the logging option has been applied, the generated rule has the -j
LOG target set.

Figure 7.6. Rule Actions

Policy actions can be combined with rule options specified in the Options rule element to have the firewall
perform multiple operations within a single rule. For example, you can tag, classify, and accept a packet
within a single rule by setting the Tag and Classify options and setting the action to Accept. For more
information on configuring policies to perform multiple operations, see Section 7.5.6.

7.2.6. Time
The Time rule element allows you to restrict a match to a particular time interval. To match against a
particular time, define a time interval object as described in Section 5.4 and drag the time interval object
into the Time rule element.

7.2.7. Options and Logging
The Options rule element allows you to enable and disable logging, set logging values, and set certain
options (such as tagging and classifying) to be applied when a packet matches the rule. Not all firewalls
support all log settings or a full set of options; however, Firewall Builder is aware of the capabilities of

Firewall Policies

175

each platform and shows only the options valid for the specified firewall target. Note that options apply
only to the current rule.

The right-click Options context menu contains three selections:

• Rule Options:

Opens the Options dialog, which allows you to set logging values and supported options for the current
rule. The options and log settings available vary with the target platform.

• Logging On:

Enables logging for packets matching this rule. If the target firewall platform does not support selective
logging of packets, log settings are disabled in the Options dialog.

• Logging Off:

Disables logging for packets matching this rule. If the target firewall platform does not support selective
logging of packets, this menu item is disabled.

At the bottom of the context menu, the Compile Rule selection allows you to perform quick rule compi-
lation.

Rule options may include the following, depending on the target platform:

• General:

Depending on the target platform, general settings may include whether inspection should be stateless
rather than stateful (for some targets, state tracking options are located located on a Stateless or State
Tracking tab), sending ICMP "Unreachable" packets masquerading as being from the original destina-
tion, keeping information on fragmented packets to be applied to later fragments, and/or whether to
assume that the firewall is part of the "any" specification.

• Logging:

Depending on the target platform, log settings may include the log level, logging interval, log facility,
log prefix, the Netlink group, and/or a checkbox to disable logging for the current rule.

• Route:

Supported only for ipfilter and PF targets. For iptables, this option is deprecated. Directs the firewall to
route matching packets through a specified interface. For PF and ipfilter, you can specify the interface
and next hop. This information is translated into the route option. You can also specify whether to
reroute the packet, reroute the reply to the packet, or make the changes to a copy of the packet, allow-
ing the original packet to proceed normally. This information is translated into the route-to, reply-to,
and dup-to options, respectively. The PF platform also supports a fast-route option, translated as the
fastroute option, and supports selecting from a set of load-balancing alogrithms.

• State Tracking:

Allows you to specify a number of options for tracking the progress of a connection. Keeping state
can help you develop rule sets that are simpler and result in better packet filtering performance. For
iptables, ipfilter, and ipfw target platforms, this option allows you to make packet inspection to be
stateless rather than stateful, which is the default. (For these platforms, this option is located on the
General tab.) PF targets support a number of additional state tracking settings. The Force "keep state"
setting directs the firewall to make a state entry even if the default for the rule is to be stateless. The
Activate source tracking setting enables tracking the number of states created per source IP address.
The Maximum number of source addresses setting controls the maximum number of source addresses

Firewall Policies

176

that can simultaneously have state table entries; this is the PF max-src-nodes option. The Maximum of
simultaneous state entries setting controls the maximum number of simultaneous state entries that can
be created per source IP address; this is the PF max-src-states option. Note that this limit controls only
states created by this rule. State tracking is not supported for Cisco FWSM, Cisco Router IOS ACL, or
Cisco ASA/ Cisco PIX target platforms.

• Tag:

Supported only for iptables and PF platforms. Associates a tag, or mark, with the packet. When you
enable this option, you must specify a TagService object which defines the tag to be applied to matching
packets.

For iptables, the Tag operation is translated into a MARK target with corresponding --set-mark pa-
rameter and, optionally, additional rule with a CONNMARK --save-mark target. If the option that
activates the CONNMARK target is used, the compiler also adds a rule at the very top of the policy
to restore the mark. Rules are placed in the INPUT, OUTPUT, and FORWARD chain of the mangle
table, which ensures that DNAT happens before rules in the mangle table interact with the packet. The
PREROUTING chain in the mangle table is executed before the PREROUTING chain in the NAT
table, so placing tagging rules in the PREROUTING chain would make them fire before DNAT. The
POSTROUTING chain of the mangle table, as well as its FORWARD and OUTPUT chains, work
before corresponding chains of the NAT table. In all cases, the goal is to make sure DNAT rules process
the packet before, and SNAT rules process the packet after, filtering and tagging rules.

For PF, this option is translated into the tag option.

• Classify:

Supported only for iptables, PF, and ipfw. Allows the firewall to define a QoS class for the packet that
matches the rule. It is translated into CLASSIFY for iptables, with the --set-class parameter. For PF, it
is translated into queue. The compiler for ipfw can use pipe, queue, or divert, depending on how the
action is configured in Firewall Builder. When you enable this option, you must specify a Classify string.

• limit:

Supported only for iptables. Implements the iptables limit module, directing the firewall to perform rate-
limiting on the connection. This option is useful for preventing, for example, TCP SYN flood attacks.
You specify the maximum average matching rate; this translates into the iptables --limit rate option,
limiting incoming connections once the limit is reached. You can also specify a burst level; this is the
maximum initial number of packets to match. The burst number is incremented by one every time the
rate-limit is not reached, up to this number; this value translates into the iptables --limit-burst option
You can also reverse the meaning of the rate-limit rule (that is, accept everything above a given limit)
by checking the Negate checkbox.

• connlimit:

Supported only for iptables. Implements the iptables connlimit module, directing the firewall to restrict
the number of parallel TCP connections for this source/destination pair. You specify the maximum
number of existing parallel connections; this translates into the iptables --connlimit-above option. You
can also specify a network mask to limit the number of connections to networks of a particular size; this
value translates into the iptables --connlimit-mask option You can reverse the meaning of the connec-
tion-limiting rule (that is, accept everything above a given limit) by checking the Negate checkbox.

• hashlimit:

Supported only for iptables. Implements the iptables hashlimit module. The hashlimit matching op-
tion is similar to the rate-limiting option, implemented per destination IP or per destination-IP/destina-

Firewall Policies

177

tion-port tuple. You must provide a name for this hash-limiting entry specify the rate and burst level.
You can also select the mode of the module, which specifies whether to match on IP address alone
(srcip or (dstip) or on an address/port combination (srcport or dstport). The htable-size setting con-
trols the number of buckets of the hash table. The htable-max setting controls the maximum number of
entries in the hash table. The htable-expire setting controls the interval (in milliseconds) after which a
has entry expires. The htable-gcinterval setting controls the interval (in milliseconds) between garbage
collection operations.

On some older iptables systems, this module is named dstlimit. If your target platform is one of these
systems, check the checkbox

• Mirror rules:

Supported only for Cisco Router IOS ACL. Directs the compiler to create a rule reversing the specified
source and destination address and service fields, which can be used to match "reply" packets for ad-
dress and service characteristics in packets matched by this rule. Detailed information about mirror rule
settings is provided in the Rule Options dialog for this platform.

Figure 7.7 shows the Tag tab of the Options dialog for the iptables platform.

Figure 7.7. iptables Options Dialog

If the options of a particular rule have been changed from their default values, a appears in the Option
field for that rule. Keep in mind that not all rules have the same default options. For example, by default a
Deny rule is stateless, because there is no reason to keep state on a connection that won't be allowed. So,
if you turn on state for a Deny rule, you'll see the icon. An Accept rule, on the other hand, has the opposite
behavior. By default, state is kept for Accept rules, so no icon appears when state is on. In other words, if
you turn state keeping off, then if you change the default behavior for that rule, the icon is displayed.

You can set multiple options and combine them with the policy's action so that the firewall performs
multiple operations within a single policy rule. For example, where supported, you can tag, classify, and
accept a packet within a single rule by configuring the Tag and Classify options and setting the action to
Accept. For more information on configuring policies to perform multiple operations, see Section 7.5.6.

7.2.8. Working with Multiple Policy Rule Sets
Every firewall object created in Firewall Builder begins with a single policy rule set. For many firewalls,
this is all you need. However, Firewall Builder allows you to create multiple access policy rule sets for

Firewall Policies

178

a single firewall object and, if your platform supports it, branch between the rule sets. This can help you
modularize your policy.

In the following example, the firewall object "fw" has three policy rule sets: Policy, Policy_2, and mgmt:

Figure 7.8. Firewall with Multiple Policy Rule Sets

To create an additional rule set, right-click the firewall object in the tree and select Add Policy Rule Set
from the context menu.

All policy rule sets have configurable parameters. To see a policy rule set's parameters, open it in the editor
by double-clicking it in the tree.

Figure 7.9. Policy Rule Set Dialog (iptables)

This dialog has a Name, IPv4/IPv6 setting and a Top ruleset checkbox. For iptables firewalls, there is also
a pair of radio buttons that indicates whether the policy should affect filter+mangle tables or just mangle
table.

The IPv4/IPv6 pull-down menu lets you select whether the rule set should be compiled for IPv4 only
(ignoring any IPv6-related rules), IPv6 only (ignoring any IPv4-related rules), or for both IPv4 and IPv6.
If both IPv4 and IPv6 are selected, the compiler automatically places each rule into the correct part of
the configuration.

When multiple rule sets have been defined, one rule set is tagged as the "top" rule set by checking the
Top rule set checkbox when the rule set is added. The top rule set is the primary rule set assigned to the
device. Only one rule set of each type can be marked as the top rule set. The top rule set is always used
(if it has any rules). Other rule sets are only used if they are the targets of branching. Scripts are generated
as follows for target platforms.

Firewall Policies

179

• iptables: Rules defined in the top rule set are placed into the built-in INPUT, OUTPUT, and FORWARD
chains. Rules defined in rule sets where the Top rule set checkbox is not checked are placed into a user-
defined chain with the same name as the rule set.

• PF: Rules defined in rule sets other than the top rule set are placed into an anchor with the name of
the rule set.

• Cisco IOS ACLs: If the rule set is not the top rule set, rules are placed into an access list and the rule
set name is prefixed to the accless list name; this access list is not assigned to interfaces using the ip
access-group command. Top rule sets generate ACLs with names consisting of a shortened interface
name plus traffic direction. Only these lists are assigned to interfaces.

You fork processing between rule sets using the Branch rule action. In the example, this rule causes packets
headed for the fw-mgmt host to be passed to the mgmt rule set.

Figure 7.10. Passing a Packet to the "mgmt" Rule Set

A packet directed to the mgmt rule set leaves the main rule set and begins matching against rules in the
mgmt rule set. If it matches in the mgmt rule set, then the specified action is taken. If it does not match
in the mgmt rule set, processing is passed back to the calling rule set.

7.3. Network Address Translation Rules
Note

As with access policy rule sets, you can create multiple NAT rule sets. However, in older versions
of Firewall Builder, it was not possible to branch between rule sets; only the rule set marked as
"top" was used in v3.x. Beginning with Release 4.0, Firewall Builder supports building branches
in NAT rule sets.

7.3.1. Basic NAT Rules
Address translation is useful when you need to provide Internet access to machines on the internal network
using private address space (10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16, as defined in RFC 1918). Pri-
vate addresses are not routable on the Internet, which means clients out on the Internet cannot connect to
servers with private addresses. Conversely, machines on the network using one of these addresses cannot
connect to servers on the Internet directly. In order to allow internal machines to establish connections
with external machines, the firewall must convert the private addresses to public addresses, and vice versa.
In other words, the firewall must perform Network Address Translation (NAT). In Firewall Builder, NAT
rules are added in the NAT rule set, located under the firewall object in the tree:

Figure 7.11. NAT Rule Set

Firewall Policies

180

Figure 7.12. Network Address Translation Rules

As in firewall policies, NAT rules are inspected by the firewall in the order they appear in the policy. Each
NAT rule consists of the following rule elements:

• Original Src

An address object to compare to the the source address of the incoming packet.
• Original Dst

An address object to compare to the the destination address of the incoming packet.
• Original Srv

One or more service objects to compare to the packet's service.
• Translated Src

If the original source, destination, and service all matched, this object becomes the new source address
of the packet.

• Translated Dst

If the original source, destination, and service all matched, this object becomes the new destination
address of the packet.

• Translated Srv

If the original source, destination, and service all matched, this object is the new service (port number)
of the packet.

• Interface In

The inbound interface for the NAT rule. On iptables systems this will result in the "-i" parameter be-
ing set. The default is Auto, which means Firewall Builder will attempt to determine the appropriate
interface(s) the rule should include.

This option is available in Firewall Builder Release 4.2 and later.
• Interface Out

The outbound interface for the NAT rule. On iptables systems this will result in the "-o" parameter
being set. The default is Auto, which means Firewall Builder will attempt to determine the appropriate
interface(s) the rule should include.

This option is available in Firewall Builder Release 4.2 and later.
• Options

This field lets you specify platform-specific options for the packet. Right-click in the field and select
Rule Options to see options for your platform. Click Help in the Options dialog to see help for available
parameters for your platform. See Section 7.2.7 for more information.

• Comment

Here is how it works:

Firewall Policies

181

The original packet is compared with NAT rules, one at a time, starting with the topmost rule. Once a
rule that matches a packet's source address, destination address and service is found, the firewall takes
parameters from the second half of that rule and makes the indicated substitutions. Some rule elements in
the first half of the rule may be set to match "any", which means that that element matches no matter what
is in the packet. Some rule elements in the second half of the rule may be set to original, which means that
parameter is not changed even if the rule matches. (No substitution happens for that element.)

In addition to making the substitution, the firewall also makes a record in its internal table of the original
and modified values. The firewall uses this information to perform a reverse translation when the reply
packet comes back.

The NAT rules in the screenshot (Figure 7.12) tell the firewall to do the following:

• Rule #0:

If the original packet originated on the internal subnet 192.168.2.0/24 and is destined for the internal
subnet 192.168.1.0/24, then there is no need to translate the packet.

• Rule #1:

If a packet is headed to the Internet from either the 192.168.2.0/24 or 192.168.1.0/24 subnet, then the
source IP address should be set to the IP address of the firewall's "outside" interface.

• Rule #2:

If any packet was originally destined for the "outside" interface on the firewall, the destination IP address
should be rewritten to be the IP address of the "server on dmz" host IP (in this case, 192.168.2.10).

Some firewall platforms support negation in NAT rules. If it is supported, this feature can be activated
by right-clicking the rule element in the NAT rule. Section 7.5.8 shows what firewall platforms support
negation in NAT.

You can create NAT rules and edit them using the same methods as described in Section 7.5

7.3.2. Source Address Translation
Using NAT to translate private IP addresses to public, and vice versa, is often called "masquerading".
When configured this way, the firewall rewrites the source IP address of each packet sent by internal
machines to the Internet, replacing the private IP address with the address of its external interface.

In Firewall Builder, this type of NAT rule is composed as shown in Rule 1 in Figure 7.12.

In this rule, objects representing internal networks are placed in Original Src and the firewall's outside
interface object is placed in Translated Src, indicating that we want the source address of the packets to
be translated. As before, we do not need to worry about reply packets, because the underlying firewall
software keeps track of translations done for all the connections opened through the firewall and rewrites
addresses in all reply packets automatically.

In Figure 7.12, Rule 1 uses the firewall interface object in the Translated Src, which means the source
address of the packet will be substituted with the address of firewall outside interface. If there is more than
one external interface, the decision of which interface to use is made by the firewall's routing table.

One of the consequences of this design is that rule #1 on Figure 7.12 provides translation for packets
coming from internal subnets going out to the Internet.

Note

Interface object can be used in the NAT rules even if the address of this interface is obtained
dynamically and is not known beforehand.

Firewall Policies

182

Figure 7.13. Translations done to packets going in different directions: (A) when
firewall object is used in TSrc in the NAT rule; (B) when interface eth1 is used in
TSrc in the NAT rule; (C) when host object with address 192.0.2.50 is used in TSrc
in the NAT rule

7.3.2.1. Examples of Source Address Translation Rules

This section demonstrates examples of NAT rules that manipulate the source address and ports of packets.

7.3.2.1.1. Basic Source Address Translation Rule

Source address translation is useful when you need to let machines using private address space (for exam-
ple, as defined in RFC 1918) access the Internet. The firewall manipulates the source address of IP packets
to make them appear to come from one of the public addresses assigned to the firewall instead of coming
from the actual, private address on the internal network.

In the following examples we will use a firewall object configured as follows:

Figure 7.14.

The external interface of the firewall is eth0, it has a static IP address 192.0.2.1 (this is an example address,
normally external interface would have a publicly routable address).

Firewall Policies

183

The simplest source address translation rule looks like this:

Figure 7.15.

We put the interface of the firewall into Translated Src and an object representing the internal network in
the Original Src element of the rule. This tells the firewall to replace the source address of packets that
match the "Original" side of the rule with the address of the interface eth0.

This rule translates into the following simple iptables command:

Rule 0 (NAT)

$IPTABLES -t nat -A POSTROUTING -o eth0 -s 172.16.22.0/24 \
 -j SNAT --to-source 192.0.2.1

Note that Firewall Builder uses the chain POSTROUTING for the source address translation rules. It will
use PREROUTING for the destination translation rules.

For PF, Firewall Builder uses nat rule:

Rule 0 (NAT)

nat on en0 proto {tcp udp icmp} from 172.16.22.0/24 to any -> 192.0.2.1

Finally, for PIX, Firewall Builder knows to use global pool in combination with the "nat" command and
automatically determines which interfaces to associate global and nat commands with:

! Rule 0 (NAT)
!
global (outside) 1 interface
access-list id43442X30286.0 permit ip 172.16.22.0 255.255.255.0 any
nat (inside) 1 access-list id43442X30286.0 tcp 0 0

Note that the generated PIX configuration has been optimized and the "global" command takes address
from the interface "outside" regardless of how this address is assigned, statically or dynamically.

7.3.2.1.2. Source Address Translation Using Interface with Dynamic Address

The generated configurations in the previous examples used the IP address of the external interface for
translation. Let's see what configuration Firewall Builder will produce if the external interface has a dy-
namic address that is not known at the time when configuration is generated.

Firewall Policies

184

Figure 7.16.

The NAT rule looks exactly the same as in examples above: we still put interface eth0 in Translated Src
even though its address is unknown.

iptables uses target MASQUERADE when the source NAT is requested with a dynamic interface. Firewall
Builder generates the following command:

Rule 0 (NAT)

$IPTABLES -t nat -A POSTROUTING -o eth0 -s 172.16.22.0/24 -j MASQUERADE

PF supports special syntax for the dynamic interface, (en0), which makes it take the address of the interface
automatically:

Rule 0 (NAT)

nat on en0 proto {tcp udp icmp} from 172.16.22.0/24 to any -> (en0)

There is no difference in the generated PIX configuration because fwbuilder optimizes it and uses the
"global (outside) 1 interface" command which takes the address from the outside interface regardless of
whether the address is assigned statically or dynamically.

7.3.2.1.3. Port Translation

Firewall Builder can generate configurations for the NAT rules that manipulate not only addresses, but
also ports and port ranges. Consider this hypothetical example where we want to squeeze a source port
range from the whole unprivileged range 1024 - 65535 to the rather limited range 10000 - 20000 on all
connections from internal network to the server on the DMZ:

Figure 7.17.

TCP Service object "sport range 10000-20000" is defined as follows:

Firewall Policies

185

Figure 7.18.

For iptables, Firewall Builder generates the following command for this rule:

Rule 0 (NAT)

$IPTABLES -t nat -A POSTROUTING -o eth+ -p tcp -m tcp -s 172.16.22.0/24 \
 --sport 1024:65535 -d 192.168.2.10 -j SNAT --to-source :10000-20000

This rule matches source port range "1024-65535" and original destination address 192.168.2.10 and only
translates source ports to the range 10000-20000. Firewall Builder generated a SNAT rule because the
object in the Translated Source requested a change in the source port range. If this object had zeros in the
source port range but defined some non-zero destination port range, the program would have generated a
DNAT rule to translate destination ports.

7.3.2.1.4. Load Balancing NAT Rules

Many firewall platforms can use NAT to perform simple load balancing of outgoing sessions across a pool
of IP addresses. To set this up in Firewall Builder, we start with an address range object:

Figure 7.19.

We then use it in the "Translated Source" of the NAT rule:

Figure 7.20.

Here is what we get for the iptables firewall:

Firewall Policies

186

Rule 0 (NAT)

$IPTABLES -t nat -A POSTROUTING -o eth+ -s 172.16.22.0/24 \
 -j SNAT --to-source 192.0.2.10-192.0.2.20

In case of PIX, fwbuilder builds complex global pool to reflect requested address range:

! Rule 0 (NAT)
!
global (outside) 1 192.0.2.10-192.0.2.20 netmask 255.255.255.0
access-list id54756X30286.0 permit ip 172.16.22.0 255.255.255.0 any
nat (inside) 1 access-list id54756X30286.0 tcp 0 0

For PF, compiler converted range 192.0.2.10-192.0.2.20 to the minimal set of subnets and produced the
following configuration line:

Rule 0 (NAT)

nat proto {tcp udp icmp} from 172.16.22.0/24 to any -> \
 { 192.0.2.10/31 , 192.0.2.12/30 , 192.0.2.16/30 , 192.0.2.20 }

It is possible to use a network object of smaller size in Translated Source which is equivalent to using a
small address range:

Figure 7.21.

We can use it in the rule just like the range object:

Figure 7.22.

This yields for PF:

Firewall Policies

187

Rule 0 (NAT)

nat proto {tcp udp icmp} from 172.16.22.0/24 to any -> 192.0.2.0/27

Unfortunately, the smaller network object in Translated Source is not supported for iptables because in
iptables, SNAT target can only accept a single IP address or a range of addresses, but not a subnet spec-
ification.

PF supports different modes of load balancing for rules like this. To add configuration parameters that
control this, open the NAT rule options dialog by double-clicking in the "Options" column of the NAT rule:

Figure 7.23.

When the "source-hash" option is checked, the generated command becomes

Rule 0 (NAT)

nat proto {tcp udp icmp} from 172.16.22.0/24 to any -> 192.0.2.0/27 source-hash

7.3.3. Destination Address Translation
Suppose we have a network using private IP addresses behind the firewall, and the network contains a
server. We need to provide access to this server from the Internet in a such way that connections will be
established to the address of the firewall. In this case we need destination address of packets to be rewritten
so packets would reach the server on internal network. The simplest rule that translates destination address
of incoming packets looks like the one on Figure 7.12, Rule 2.

Basically this rule says "if destination address of the packet matches the external address of the firewall,
replace it with the address defined by the object server on dmz". If we had used the "firewall" object as
the original destination, instead of the interface, then all external interfaces would be mapped to the DMZ
server. Figure 7.26 (A) illustrates this. The red, green, and blue packets come to the firewall from different
subnets and all have destination addresses that match address of the corresponding interface. If it were
not for our NAT rule, packets like that would have been accepted by the firewall and sent to a process
expecting them. However, the NAT rule comes to play and changes destination address of all three packets
to 10.3.14.100 (the address of server). Packets with this address do not match any address belonging to
the firewall and therefore get sent out of the firewall according to the rules of routing.

A rule that does not specify any service for the translation translates addresses in packets of all protocols.
This approach can make some rules impractical because they will translate and bounce any packets that are

Firewall Policies

188

headed for the firewall, making it impossible to connect to the firewall itself using telnet or any other pro-
tocol. This is especially inconvenient since, as we saw earlier, translation happens for packets coming from
all directions; this means that you won't be able to connect to the firewall even from inside of your network.
To alleviate this problem we just add an appropriate service object to the rule as shown in Figure 7.24:

Figure 7.24. Translation Limited to Packets of HTTP Protocol

Rule #0 in Figure 7.24 has limited scope because of the service object "http" in Original Service; it matches
and performs address translation only for packets of HTTP protocol, while other packets are processed by
TCP/IP stack on the firewall as usual. Very often we only want to translate address for packets coming
from particular side of the firewall, typically from the Internet, and do not change other packets. Rule #0
on Figure 7.25 achieves this goal by using firewall's interface object in Original Destination. Only packets
with destination address the same as that of interface eth1 of the firewall match this rule and get their
address translated. Packets coming from other directions will have different destination address and won't
match the rule (see Figure 7.26 (B)).

Figure 7.25. Destination Address Translation Rule Using Firewall Interface

Figure 7.26. Translations done to packets going in different directions: (A) when
firewall object is used in ODst in the NAT rule and (B) when interface eth1 is used
in ODst in the NAT rule

7.3.3.1. Examples of Destination Address Translation Rules in Fire-
wall Builder

This section demonstrates examples of NAT rules that manipulate the destination address and ports of
packets.

Firewall Policies

189

7.3.3.1.1. Configuring NAT for the Server using an IP address Belonging to the
Firewall

In cases where we have no public IP addresses to spare, we can still use NAT to permit access to the
server. In this case, we will use address that belongs to the firewall's external interface. Here is a screenshot
showing the firewall object, its interfaces, and an address object that belongs to the external interface:

Figure 7.27.

We can either use an interface object or a corresponding address object in the rule. The following two
examples of rules are equivalent:

Using an interface object:

Figure 7.28.

Using an address object:

Figure 7.29.

The external interface eth0 of the firewall has just one IP address; therefore, these two variants of the NAT
rule are equivalent.

If the firewall has multiple public IP addresses, then you can add them as additional address objects to the
external interface object and then use them in the NAT rules. All address objects attached to an interface
are equivalent from a NAT rule standpoint.

Both NAT rules demonstrated in this example provide translation for the destination address of the packet
so it can reach the server behind the firewall. We still need a policy rule to actually permit this kind of
connection. This rule can be added to the global policy as follows:

Firewall Policies

190

Figure 7.30.

You always need a combination of the NAT rule and a policy rule to do both address translation and then
permit the translated packet.

Here is what Firewall Builder generates for iptables using these NAT and policy rules:

Rule 0 (NAT)

$IPTABLES -t nat -A PREROUTING -p tcp -m tcp -m multiport -d 192.0.2.1 \
 --dports 21,25 -j DNAT --to-destination 172.16.22.100

Rule 0 (global)

$IPTABLES -A FORWARD -i + -p tcp -m tcp -m multiport -d 172.16.22.100 \
 --dports 21,25 -m state --state NEW -j ACCEPT

For PF:

Rule 0 (NAT)

rdr on eth0 proto tcp from any to 192.0.2.1 port 21 -> 172.16.22.100 port 21
rdr on eth0 proto tcp from any to 192.0.2.1 port 25 -> 172.16.22.100 port 25

Rule 0 (global)

pass in quick inet proto tcp from any to 172.16.22.100 port { 21, 25 }

These are rather standard destination translation rules. Let's see what Firewall Builder generates for the
same rules in the GUI when target firewall platform is set to "PIX":

Firewall Policies

191

class-map inspection_default
 match default-inspection-traffic

policy-map global_policy
 class inspection_default
 inspect ftp
 inspect esmtp

service-policy global_policy global

clear config access-list
clear config object-group
clear config icmp
clear config telnet
clear config ssh

object-group service outside.id13228X30286.srv.tcp.0 tcp
 port-object eq 21
 port-object eq 25
 exit

! Rule 0 (global)
!
!
access-list outside_acl_in remark 0 (global)
access-list outside_acl_in permit tcp any host 172.16.22.100 object-group
 outside.id13228X30286.srv.tcp.0
access-list inside_acl_in remark 0 (global)
access-list inside_acl_in permit tcp any host 172.16.22.100 object-group
 outside.id13228X30286.srv.tcp.0
access-list dmz50_acl_in remark 0 (global)
access-list dmz50_acl_in permit tcp any host 172.16.22.100 object-group
 outside.id13228X30286.srv.tcp.0

access-group dmz50_acl_in in interface dmz50
access-group inside_acl_in in interface inside
access-group outside_acl_in in interface outside

! NAT compiler errors and warnings:
!

clear xlate
clear config static
clear config global
clear config nat
!
! Rule 0 (NAT)
!
!
access-list id13242X30286.0 permit tcp host 172.16.22.100 eq 21 any
static (inside,outside) tcp interface 21 access-list id13242X30286.0 tcp 0 0
access-list id13242X30286.1 permit tcp host 172.16.22.100 eq 25 any
static (inside,outside) tcp interface 25 access-list id13242X30286.1 tcp 0 0

PIX configuration is considerably more complex. First, protocol inspectors have been activated to set up
protocol support. TCP ports were arranged in an object group that is then used in all rules. Access lists
were created and attached to all interfaces with "access-group" commands. Destination address translation
in PIX configuration is done using "static" commands, which use small access lists to match packets that
should be translated. All of this, however, was generated from exactly the same rules and objects in the
GUI. All we did is change the firewall platform in the firewall object dialog and make sure network zones

Firewall Policies

192

and security levels were configured properly. We did not have to configure two interfaces for each NAT
rule for PIX: Firewall Builder automatically determined which interfaces it should use for the "static"
command.

7.3.3.1.2. Configuring NAT for the Server Using a Dedicated Public IP Address

Suppose for some reason you do not want to add an address that should be used for NAT to an interface
of the firewall. You can use any address object in the "Original Destination" even if this address object is
not attached to the interface of the firewall. The problem with this is that the firewall must "own" public
address used for NAT in order for it to answer ARP requests for this address from the upstream routers. If
the firewall does not "own" the address and does not answer ARP requests, the router will not know where
to send packets with this address in destination. To help you solve this problem, Firewall Builder can
automatically add a virtual address to the firewall's interface when you use an address in a NAT rule. This
is controlled by a checkbox Add virtual addresses for NAT in the "Script" tab of the firewall's platform
"advanced" settings dialog. If this checkbox is turned on, and you use an address object that does not
belong to any interface of the firewall, the program adds a code fragment to the generated script to create
virtual address of the interface of the firewall to make sure NAT rule will work. If this is not the desired
behavior, you can turn this automation off by unchecking this option.

If you use this feature, the NAT rules look exactly the same as shown above, except address objects are
taken from the Objects/Addresses branch of the tree instead of the interfaces of the firewall. In case of
iptables, generated script adds virtual addresses to the firewall with a label that starts with "FWB:" prefix.
This helps the script identify and remove addresses it controls when you remove them in Firewall Builder
GUI.

7.3.3.1.3. NAT Rules Using an Address of Dynamic External Interface

In all previous examples, the external interface of the firewall had a static IP address that was used in the
destination address translation rules. But what if the address is dynamic and not known at the time when
Firewall Builder processes rules? Let's see what happens.

Configuration of objects used in this example:

Figure 7.31.

The only difference is that interface eth0 of the firewall is dynamic and has no IP address. In order to
build NAT rules we use this interface in Original Destination (the rule looks exactly the same as rules in
the previous examples):

Figure 7.32.

Firewall Builder uses the method specific to the target firewall platform that allows it to use an interface
a with dynamic address in policy and NAT rules. For example, the iptables script generated by Firewall

Firewall Policies

193

Builder runs commands that retrieve the actual address of the interface and assign it to the shell variable.
This variable is then used in iptables commands to build policy and NAT rules. OpenBSD PF permits
using of interface name in rules, PIX has special syntax for "nat", "static" and "access-list" commands that
also permit using interface in place of the address.

Here is generated iptables script:

getaddr() {
 dev=$1
 name=$2
 L=`$IP -4 addr show dev $dev | grep inet | grep -v :`
 test -z "$L" && {
 eval "$name=''"
 return
 }
 OIFS=$IFS
 IFS=" /"
 set $L
 eval "$name=$2"
 IFS=$OIFS
}

getaddr eth0 i_eth0

Rule 0 (NAT)

test -n "$i_eth0" && $IPTABLES -t nat -A PREROUTING -d $i_eth0 \
 -j DNAT --to-destination 172.16.22.100

It defines function getaddr() that retrieves IP address of a given interface and assigns it to a variable, in
this example to i_eth0. The script checks if this variable has a non-empty value and uses it in -d clause of
iptables command to match destination address of incoming packet. The generated script checks the value
of this variable because, if some interface does not have any address at the moment when script is executed,
it should not try to run an incorrect iptables command or, worse, install an iptables rule matching "any".
Either way, the machine would end up with firewall configuration that would have a meaning different
from what was intended.

In PF we can use the (en0) clause to make the firewall match address of an interface without having to
retrieve the address manually:

Rule 0 (NAT)

rdr on en0 proto {tcp udp icmp} from any to (en0) -> 172.16.22.100

The generated PIX configuration uses interface clause to match address of the interface:

! Rule 0 (NAT)
!
access-list id29402X30286.0 permit ip host 172.16.22.100 any
static (inside,outside) interface access-list id29402X30286.0 tcp 0 0

Firewall Policies

194

7.3.3.1.4. Port Translation

The rules shown in the examples above translated only the destination address of packets. Sometimes the
server uses different ports as well, and the firewall should convert from the standard port numbers to the
ones used by the host. For example, the web server might be running on port 8080, but we may want clients
to access it using standard port 80. Here is how to do this.

First, we create a TCP service object that defines destination port 8080:

Figure 7.33.

This service object does not have any source port specification. Only the destination port is defined. Now
we can use it in the NAT rule as follows:

Figure 7.34.

Firewall Builder generates the following iptables script for this rule:

Rule 0 (NAT)

$IPTABLES -t nat -A PREROUTING -p tcp -m tcp -d 192.0.2.1 --dport 80 \
 -j DNAT --to-destination 172.16.22.100:8080

It uses -j DNAT --to-destination <address>:<port> to translate both destination address and destination
port.

Here is how this looks for PF:

Rule 0 (NAT)

rdr on en0 proto tcp from any to 192.0.2.1 port 80 -> 172.16.22.100 port 8080

PIX rules look like this:

Firewall Policies

195

! Rule 0 (NAT)
!
!
access-list id37125X30286.0 permit tcp host 172.16.22.100 eq 8080 any
static (inside,outside) tcp interface 80 access-list id37125X30286.0 tcp 0 0

7.4. Routing Ruleset
Though not strictly a firewall function, Firewall Builder also lets you configure the routing tables of Linux,
BSD, Cisco ASA/PIX and Cisco IOS firewalls. Routing rules are ignored for other firewalls.

Construct these rules the same way you construct access policy or NAT rules, by dragging the appropriate
objects into the rules. When you run the compiled script on the target firewall, the routing rule set rules
create static routes in the firewall.

Note

When executing a firewall script, all existing routing rules previously set by user space processes
are deleted. To see which rules will be deleted, you can use the ip route show command. All
lines not including "proto kernel" will be deleted upon reload of the firewall script.

If you want to use ECMP (Equal Cost Multi Path) routing rules with your iptables-based firewall, make
sure your kernel is compiled with the CONFIG_IP_ROUTE_MULTIPATH option. See Section 7.4.2 for
instructions on creating multiple paths to a destination.

Figure 7.35. A Routing Rule

• Destination

Can be any addressable object (hosts, addresses, address ranges, groups, networks.) The default desti-
nation ("Default") is 0.0.0.0/0.

• Gateway

Can be an IP address, an interface, or a host with only one interface.

• Interface

Specify an outbound interface for packets. This interface must be a child interface of the firewall. This
option is not available for BSD firewalls.

• Metric

The metric of the route. The default metric for PIX is 1, so a "0" in a rule is automatically changed to
1 at compilation. This option is not available for BSD firewalls.

• Comment

A free-form text field.

Firewall Policies

196

Note

RedHat seems to reset routing rules explicitly upon system startup. Therefore, it's hard to distin-
guish interface routes from routes set up by the user. On RedHat systems, you need to include
the interface basic routing rules into your Firewall Builder routing setup.

IF YOU DO NOT FOLLOW THIS HINT, YOUR MACHINE WILL FREEZE ANY NET-
WORK TRAFFIC UPON START OF THE FIREWALL SCRIPT. This means, for ex-
ample, if eth0 has network 192.168.3.0/24 attached to it, you need to add a route with
Destination=Network(192.168.3.0/24), Gateway empty, and Interface=eth0.

This problem was encountered on RedHat 8.0, but other versions and distributions might be af-
fected too. (Debian sarge and SuSE Linux work fine without interface routing rules being includ-
ed in Firewall Builder routing rules.)

7.4.1. Handling of the Default Route

"Default route" is special in that it is critical for your ability to access the firewall machine when it is
managed remotely. To make sure you do not cut off access accidentally by not adding default to the routing
rules in Firewall Builder, Firewall Builder treats the default route in a special way.

If the default route is configured in the routing rule set in Firewall Builder, then the default route found
in the routing table is deleted and replaced with the one configured in Firewall Builder. However, if there
is no default route in the routing rule set in Firewall Builder configuration, then the original default route
found in the routing table is not deleted.

Additionally, the script checks if the installation of routing entries was successful and rolls changes back
in case of errors. This ensures that the firewall machine will not be left with no default route and therefore
no way to access it remotely.

7.4.2. ECMP routes

Firewall Builder supports ECMP routes in Linux-based firewalls using iptables. To create an ECMP rule
simply specify several rules with different paths (i.e., different combinations of Gateway and Interface,
for the same Destination and with the same metric).

In this example, there are three different paths to HostA.

Figure 7.36. ECMP Routing Rule

Rules are automatically classified in ECMP rules and non-ECMP. The ECMP rules are written out in a
separated section of the firewall script after the "normal" routing rules.

Firewall Policies

197

7.5. Editing Firewall Rule Sets

7.5.1. Adding and Removing Rules

Figure 7.37. Modifying Policy Rules

Rules can be added, removed, or moved around in the rule set using the Rules menu or the context menu
shown in Figure 7.37. To open the context menu, right-click the rule number in the (the first column of
the rule).

Using these functions, you can add new rules above or below the currently selected rule in the policy,
remove rules, move the current rule up or down, or use standard copy and paste operations on policy rules.
Functions are appied to all selected rules.

The following rule-related functions are available in the Rules menu and the associated right-click context
menu:

• New Group

Groups contiguous rules together for easier handling. A group of rules can be collapsed in the display
so that only the group name appears. This can make it easier to work with rule sets that have many rules.
The New Group command opens a dialog that lets you create and name the new group. The currently
selected rule is automatically added to the group. Section 7.5.7 provides information on working with
rule groups.

• Add to the group

This context menu selection appears only if you right-click a rule directly above or below an existing
group. If selected, the current rule is added to the indicated group. Section 7.5.7 provides information
on working with rule groups.

• Remove from the group

Firewall Policies

198

The context menu selection appears only if you right-click a rule that is currently in a group. This
selection removes the rule from the group. If you remove a rule from the middle of a group, the group
splits into two groups, one above and one below the selected rule. Both groups have the same name as
the original group. Section 7.5.7 provides information on working with rule groups.

• Change Color

This menu item allows you to assign a color to the rule background. Assigning colors is a good way to
group rules visually according to function.

• Insert Rule

Inserts new rule above the current one.
• Add Rule Below

Inserts a new rule below the current one.
• Remove Rule

Removes the selected rule from the rule set.
• Move Rule Up

Moves the selected rule up by one position. The keyboard shortcut is "Ctrl-PgUp" on Linux and Win-
dows or "Cmd-PgUp" on Macintosh. If you select several consecutive rules and use this menu item, all
selected rules move together.

• Move Rule Down

Moves current rule down by one position. Keyboard shortcut is "Ctrl-PgDown" on Linux and Windows
or "Cmd-PgDown" on Macintosh. If you select several consecutive rules and use this menu item, all
selected rules move together.

• Copy Rule

Copies the current rule to the clipboard.
• Cut Rule

Copies current rule to the clipboard and removes it from the rule set.
• Paste Rule Above

Inserts the rule from the clipboard above the current one.
• Paste Rule Below

Inserts the rule from the clipboard below the current one.
• Disable Rule

Marks the rule as disabled; this makes the policy compiler ignore it.
• Compile rule

This menu item compiles the selected rule and shows the result in the editor panel at the bottom of the
main window.

7.5.2. Adding, Removing, and Modifying Objects in Poli-
cies and NAT Rules

To add objects to a policy or NAT rule, you can either drag the objects from the obect tree and drop
them into the corresponding rule element, or use a copy and paste operation. Objects can be copied into
clipboard from the object tree or from another policy rule; in either case, use the right-click context menu
or the main menu Edit option.

Firewall Policies

199

Right-clicking when the cursor is over the rule elements "Source","Destination" or "Service" opens a
context-sensitive pop-up menu (Figure 7.38). The same context menu appears when you hover the mouse
over the "Original Source", "Original Destination", "Original Service", "Translated Source", "Translated
Destination" and "Translated Service" rule elements in a NAT rule.

Figure 7.38. Modifying Objects in a Policy Rule

This menu provides items for the following functions:

• Edit

This menu item opens the currently selected object in the dialog area.
• Copy

The object is copied into clipboard.
• Cut

The object is copied into clipboard and removed from the rule.
• Paste

The object on the clipboard is pasted into the field in the the rule. A copy of the object stays on the
clipboard, so it may be pasted multiple times.

• Delete

The object is deleted (actually moved to the "Deleted Objects" library).
• Where used

Opens a dialog that shows a list of where the rule is used in all rule sets in the current firewall. In addition,
simply clicking on an object puts a red rectangle around that object everywhere it occurs in the rule set.

• Reveal in tree

Shows the object in its location in the appropriate tree. Simply clicking on the object does the same thing.
• Negate

All objects in the selected rule element are negated. The rule element "Source" is negated in rule #1
in screenshot Figure 7.38.

• Compile rule

This menu item compiles selected rule and shows the result in the editor panel at the bottom of the
main window.

Firewall Policies

200

7.5.3. Changing the Rule Action

To change a rule action, right-click in the Action field and select the new action from the context menu (
Figure 7.39). Depending on the action selected, the Action dialog may open for you to specify parameter
settings.

Figure 7.39. Modifying the Action of a Policy Rule

Rule actions are described in detail in Section 7.2.5.

7.5.4. Changing Rule Direction

To change the traffic direction for a rule, right-click in the Direction field and select the new direction
from the context menu (Figure 7.40).

Figure 7.40. Modifying the Direction of a Policy Rule

Traffic directions are described in detail in Section 7.2.4.

7.5.5. Setting Rule Options and Logging

To change the options and log settings associated with a rule, right-click in the Options field and select
a menu tiem from the context menu. Enable or disable logging by right-clicking the Options field and
selecting Logging On or Logging Off, respectively, from the context menu. Set rule options or change log
settings by opening the Options dialog. You can do this by double-clicking within the Options field of the
rule or by right-clicking the Options field and selecting Rule Options from the context menu.

Firewall Policies

201

Figure 7.41. Rule Options for Policies

Rule options and log settings are described in detail in Section 7.2.7.

7.5.6. Configuring Multiple Operations per Rule
Suppose you have a scenario where you want the firewall to perform a number of operations on packets
that match a particular firewall rule. For example, you might want packets matching the rule to be marked
(tagged), classified and then accepted. Instead of defining multiple single-action rules to accomplish this
behavior, Firewall Builder allows you to combine a set of rule options with an action in a single rule.
The ability to specify multiple operations for a single rule helps keep the number of required rules to a
minimum, and keeps your rule set simpler and more readable.

Some target firewall platforms, such as PF, natively support performing multiple operations per rule. Other
firewall platforms, such as iptables, do not explicitly support configuring multiple operations per rule. For
these platforms, Firewall Builder automatically transforms the configured policy into however many rules
are required by the target platform.

7.5.6.1. Configuring an iptables rule to Accept and Classify

Let's look at an example where traffic matching a particular rule, such as the one shown in Figure 7.42.
This rule matches SSH traffic destined to a specific address.

Figure 7.42. Basic rule with no options set

The way the rule is currently defined traffic matching the rule will be accepted and no other operations
will be performed. However, if in addition to accepting the traffic you also want to classify the traffic into
classful qdisc for use with tc, then you need to use the Classify rule option to define the classify value that
should be set for traffic matching the rule.

In this example we will use a qdisc value of 1:20 which matches a value configured in tc for prioritizing
SSH traffic.

Steps for adding classify string to matching traffic.

1. Right-click on Options section of rule and select Rule Options

2. Click on Classify tab in the Editor panel at the bottom of the screen

3. Enter the value 1:20 in the text box for the Classify string as shown in Figure 7.43

Firewall Policies

202

Figure 7.43. Entering classify string in Editor panel

Notice that the Classify icon and classify string value are now displayed in the rule's Options column. This
lets you quickly and easily see what options have been configured for a particular rule.

Figure 7.44. Rule with Classify option set

Using the Section 10.2 feature you can see that this rule will result in the following iptables commands
being generated.

$IPTABLES -A FORWARD -p tcp -m tcp -d 192.168.2.10 --dport 22 -m state --state NEW \
-j ACCEPT
Allow SSH to server
$IPTABLES -t mangle -A POSTROUTING -p tcp -m tcp -d 192.168.2.10 --dport 22 -m state \
--state NEW -j CLASSIFY --set-class 1:20

7.5.6.2. Configuring a PF rule to Tag packets

In this example traffic matching a rule on a PF firewall should be tagged with a tag value that identifies
that the traffic is from an internal network that entered the firewall inbound on its internal (em1) network
interface.

First, a TagService object needs to be created that will identify the tag value that should be applied to the
matching traffic. In this case the tag value will be set to "Internal_Net".

1. In the object tree right-click on the TagServices folder and select New TagService

2. Enter a name for the TagService object

3. Enter the tag value that should be applied, in this case "Internal_Net"

The TagService should like like Figure 7.45.

Firewall Policies

203

Figure 7.45. TagService object settings

Next, the rule shown in Figure 7.46 matches the internal network traffic inbound on networking interface
em1 needs to be created.

Note

If we set the Action to Accept for this rule the packets will be tagged, but they will also be accepted
and no other rules will be processed. To tag the packets, but have the firewall continue processing
the packets against additional rules we need to set the Action to Continue.

Using the Continue action will allow you to define rules farther down in the policy that make use
of the tag. Depending on the version of PF that you are using, this will result in ether "pass" or
"match" rules being generated by Firewall Builder.

Figure 7.46. Basic rule without tag being set

To set the tag value that will be added to packets that match this rule, do the following:

1. Right-click on the Options column of the rule and select Rule Options

2. Click on the Tag tab in the Editor panel at the bottom

3. Drag-and-drop the TagService object created earlier from the object tree to the the drop target in the
Editor panel as shown in Figure 7.47

Figure 7.47. Setting the TagService object to use in the rule

After the TagService object has been added to the rule, the final rule should look like Figure 7.48.

Firewall Policies

204

Figure 7.48. Completed tag rule for PF

Using the Section 10.2 feature you can see that this rule will result in the following PF command being
generated.

Tag internal traffic
pass in on em1 inet from 192.168.1.0/24 to any tag Internal_Net label "RULE 0 -- "

On more recent versions of PF using the Continue Action in a rule will result in the "match" keyword being
used. Here's an example of the same rule from above, but with a configuration generated for a firewall
that is running PF 4.7.

Tag internal traffic
match in on em1 inet from 192.168.1.0/24 to any tag Internal_Net no state label "RULE 0 -- "

7.5.7. Using Rule Groups

7.5.7.1. Creating Rule Groups

If you have a rule set with quite a few rules, it can be useful to lump some of them together into rule
groups. A rule group is a contiguous set of rules that you have grouped together and assigned a name to.
Once you have a group, you can collapse it down visually to save screen real estate, then pop it back open
when you need to look inside.

Rule groups only affect how the rules are displayed visually. They have no affect on how the rule set is
compiled or how it works on the firewall.

Let's look at a simple example of using rule groups.

Figure 7.49 shows a fragment of a set of rules. There are two rules for packets destined for eth0, several
rules for packets destined for eth1, and a couple rules for eth2-destined packets.

Figure 7.49. Rules without Grouping

Firewall Policies

205

The eth2 rules take up a lot of space, so let's group them together. We can then collapse the group so it
uses less space.

To create the group, right-click in the rule number cell of the first "eth1" rule and select New group. (You
don't have to click the first rule. Any rule in the group will do.)

Figure 7.50. Creating a Group

A dialog appears. Enter the name of the group. This name is for your convenience only, so it can be
anything. Here we're naming the group after the interface, but a more descriptive name can be more useful.

Figure 7.51. Naming a Group

Now we have a group with one entry. This doesn't provide much value, so let's add other rules to the group.
You can add as many rules as you want, but they must all be contiguous in the rule set.

Figure 7.52. Group with One Entry

Firewall Policies

206

To add more rules, right-click a rule adjacent to the rule in the group, then select Add to the group eth1.

Figure 7.53. Adding a Rule to a Group

Do that to the rest of the "eth1" rows, and we now have a populated group. You can select several conse-
qutive rules and add them to the group at once.

Figure 7.54. A Group of Rules

To collapse the group, just click the little minus (-) or a triangle icon (depends on the OS and visual style)
in the upper left of the group.

Figure 7.55. Collapsed Group

The group now takes up less room on your screen, though it has not changed in function.

Firewall Policies

207

7.5.7.2. Modifying Rule Groups

You can modify a rule group after you have created it. Options are as follows:

• Renaming a Group

To rename a group, right-click the group name (or anywhere on the gray bar that heads the rule, and
select Rename group. Then, change the name in the dialog and click OK.

• Add more rules to a group

You can add an existing rule to a group if the rule is directly above or below the group. Simply right-
click the rule and select Add to the group eth1.

• Remove a rule from a group

To remove a rule from the group while leaving it in the rule set, right-click in the number of the rule
(left-most column) and select Remove from the group. You can only remove the first or the last rule in
the group. Rules in the middle of the group can not be removed from it.

• Remove a rule completely

You can remove a rule in a group entirely by right-clicking the number of the rule (left-most column)
and selecting Remove rule. This will remove the rule from the rule set entirely and works the same
regardless of whether the rule is a member of a group or not. If you want to move the rule to anther part
of the rule set, select Cut rule instead, and then paste the rule elsewhere.

7.5.8. Support for Rule Elements and Features on Vari-
ous Firewalls

Certain fields in the rules are only available if the target firewall platform supports them. For example, the
iptables firewall provides controls for logging of matched packets, while Cisco PIX does not; PIX always
logs every packet it drops. Where possible, the policy compiler tries to emulate the missing feature. For
example, OpenBSD PF does not support negation natively, but the policy compiler provides a workaround
and tries to emulate this feature for PF. Another example is policy rules with "Outbound" direction. Cis-
co PIX supports only inbound access lists, so the policy compiler emulates outbound Access Lists while
generating configuration for PIX. Table 7.1 represents a list of fields in the rules and which firewall plat-
forms support them. Information about these fields and features is available for Firewall Builder GUI that
disables corresponding menu items and hides associated policy elements when they are not supported.

Table 7.1. Rule Features Available on Different Platforms

Fire-
wall
Plat-
form

Source Desti-
nation

Service Time
Inter-
val

Direc-
tion

Action Log-
ging/
Op-
tions

Com-
ment

Nega-
tion in
Policy
rules

Nega-
tion in
NAT
rules

iptables + + + + + + + + + +

ipfilter + + + - + + + + + -

pf + + + - + + + + + +

Cisco
PIX

+ + + - + + - + - -

7.6. Compiling and Installing Your Policy
See Chapter 10 for full details on compiling and installing your firewall policy.

Firewall Policies

208

7.7. Using Built-in Revision Control in Firewall
Builder

Note

Linux and *BSD users must install RCS before using revision control in Firewall Builder.

Firewall Builder GUI has built-in revision control system that can be used to keep track of changes in the
objects and policy rules. If a data file has been added to the revision control system, every time it is saved,
the system asks the user to enter a comment that describes changes done in the file in this session and
stores it along with the data. The program also assigns new revision number to the data file using standard
software versioning system with major and minor version numbers separated by a dot. When you open
this data file next time, the program presents a list of revisions alongside with dates and comments, letting
you choose which revision you want to use. You can open the latest revision and continue working with
the file from the point where you left off last time, or open one of the older revisions to inspect how the
configuration looked like in the past and possibly create a branch in the revision control system. Here we
take a closer look at the built-in revision control system.

We start with a regular data file which we open in the Firewall Builder GUI as usual. Note that the name
of the file appears in the title bar of the main window, here it is test2.fwb:

Figure 7.56.

You can always see additional information about the file using main menu File/Properties. There is not
much the program can report about this file that we do not know already. It shows full path where it is
located on the file system and the date and time of last modification, but otherwise since it has not been
added to the revision control system, there is no additional information it can report.

Firewall Policies

209

Figure 7.57.

To start tracking revisions of this data file, use menu File/Add File to RCS, the program creates all neces-
sary files and reports result in a pop-up dialog. If for some reason adding file to the revision control has
failed, the program reports error in the same pop-up dialog. Section 15.6 has a list of typical problems
that may occur at this point.

Table 7.2.

A few things have changed in the GUI after the file has been added to the revision control system. First,
in addition to the file name, the title bar now also shows its revision. The initial revision number after
checkin is 1.1.

Firewall Policies

210

Figure 7.58.

The File/Properties dialog shows that the file is now being tracked by the revision control system and that
its current revision is 1.1. There is only one revision in the history and the comment is "Initial revision",
which is added automatically by the program.

Figure 7.59.

Let's see how the revision control system keeps track of the changes in the data file. To demonstrate this,
we are going to make a change in one of the objects, save the object file and check it in (this creates new
revision). Then we'll close the object file. Then, we'll open both revisions to see the differences.

Here is the rule set of the new firewall. It is very simple and consists of just five rules:

Figure 7.60.

Firewall Policies

211

Now we add one more rule (to permit HTTP to the firewall). This is rule #3; it is colored yellow:

Figure 7.61.

Now we save this file using File/Save and exit the program. Before we can do that, however, the program
tries to check the file in to the RCS and presents a dialog where we can add a comment to document the
change we made. We enter the comment and click Check file in to complete the operation. The file is now
checked in and the program exits.

Figure 7.62.

Now we restart the program and open the same file using File/Open. Since the file is now in revision con-
trol, the program presents the dialog with the list of its revisions. Each revision has a comment associated
with it, shown at the bottom of the dialog. Note also that each revision also shows the user name of the
user who checked it in, which is very useful in a multi-user environment.

Firewall Policies

212

Table 7.3.

If we choose revision 1.2 (the latest) and click Open, we see the rule that permits HTTP to the firewall:

Figure 7.63.

If we choose revision 1.1 and open the file, we get this policy (note revision number in the main window
title bar, it is 1.1):

Firewall Policies

213

Figure 7.64.

The rule to permit HTTP to the firewall is not there because we opened the earlier revision of the data
file. Essentially, we rolled back the change we made in rev 1.2. If we only opened the earlier file to take a
quick look, we can now just close the file, then open the latest version to continue working. However, if
we wanted, we could compile and install the old revision. Note that this can break things if some protocols
were added to the firewall rules later, but this can be useful if you need to test things as they were few
days ago.

However, if we want to roll back the change and continue without it, all we need to do is make the change
in this revision (1.1) and then save and check it in. This will create a branch in RCS and we will be able
to continue working with it later. The previous change, checked in as rev 1.2 will always be there, and we
will always be able to revert to it if we want. The program does not merge branches, merging changes in
XML files is a complex task and is not implemented at this time.

To illustrate creation of a branch, we are making a change to the revision 1.1 of the data file as shown
on the next screenshot:

Firewall Policies

214

Figure 7.65.

We then save and check this file in with an appropriate comment. To check it in we use File/Commit.
We then close the file using File/Close and reopen it again using File/Open. This accomplishes the same
operation as in the example above in this document, except we do not close the program. When we try to
open it, the program shows the branch and new revision 1.1.1.1 that we just created. Note that the time of
the revision 1.1.1.1 is later than the time of revision 1.2:

Figure 7.66.

Now if we open rev 1.1.1.1, continue working with and check new changes in, the program will create
revision 1.1.1.2 and so on.

This section demonstrates how the built-in revision control system in Firewall Builder GUI can be used to
document changes in the file. It can also be used to roll back changes to a previous revision both temporary
or permanently. Using RCS helps establish accountability if several administrators can make changes to
the policy of firewalls because RCS keeps track of the user name of the user who checked changes in. RCS

Firewall Policies

215

in Firewall Builder works on all supported OS, that is Linux, FreeBSD, OpenBSD, Windows and Mac
OS X. On Linux, *BSD and Mac OS X it relies on system-wide installed rcs package, while on Windows
rcs tools are installed as part of the Firewall Builder package. In general, it's useful to always use revision
control even in simple cases when only one administrator uses the tool. The ability to document changes
and roll back if necessary greatly improves the process of security policy management.

216

Chapter 8. Cluster configuration
Firewall Builder 4.0 introduced support for firewall clusters. Firewall Builder helps you create configu-
ration for iptables, PF, or PIX rules and in some cases cluster configuration as well. The following state
synchronization and failover protocols are supported at this time:

Table 8.1. Supported State Synchronization and Failover Software

OS State Synchro-
nization

Failover

Linux conntrackd vrrpd, heartbeat, keepalived, OpenAIS

OpenBSD/Free-
BSD

pfsync CARP

Cisco ASA (PIX) PIX state sync pro-
tocol

PIX failover protocol

Cisco IOS Router None None

Firewall Builder automatically generates policy rules to permit packets of these protocols when it sees
firewall cluster configured with one of them. You can use cluster object and its interfaces instead of the
member firewall objects or their interfaces in policy and NAT rules and the program will substitute correct
addresses when it generates iptables script or PF or PIX configuration.

Note

Cisco IOS router firewall objects can be used in a cluster, but Firewall Builder does not support
a failover protocol for IOS router clusters, so no rules are automatically created for this type of
cluster.

Detailed description of the Cluster object is provided in Section 5.2.3.

8.1. Linux cluster configuration with Firewall
Builder

Detailed walk-through examples for different Linux, BSD and PIX cluster configurations can be found in
Firewall Builder Cookbook chapter Section 14.4

High Availability (HA) configurations on Linux can be built using different software packages, such
as vrrpd (VRRPD home page [http://off.net/~jme/vrrpd/]) or heartbeat (Linux-HA home page [http://
www.linux-ha.org/]). Firewall Builder focuses on the firewall configuration and provides independent
way of configuring iptables rules for Linux HA clusters and can be used with any HA software package,
including home-grown scripts and packages that will appear in the future. At this time Firewall Builder
does not generate configuration or command line for the HA software.

Like with all other supported firewall platforms, interface objects that belong to a cluster object serve to
establish association between actual interfaces of the member firewalls. Cluster interface object should
have the same name as corresponding member firewall interfaces. It should have Failover Group child
object configured with interfaces of the member firewalls. You can create Failover Group object using
context menu item "Add Failover Group", the menu appears when you right mouse click on the cluster

http://off.net/~jme/vrrpd/
http://off.net/~jme/vrrpd/
http://www.linux-ha.org/
http://www.linux-ha.org/
http://www.linux-ha.org/

Cluster configuration

217

interface object. If you create new cluster using "New object" menu or toolbar button, the wizard that
creates new cluster object will create Failober Group objects automatically. Here is how it should look like:

Figure 8.1. Failover group objects and mapping between cluster and member
interfaces

Note that the name of the cluster interface should match the name of the member interfaces exactly, even
if it may appear that HA software running on the firewall creates new interface such as eth0:0. Heartbeat
daemon creates what looks like interface "eth0:0" when it becomes active and assumes virtual ip address.
The "eth0:0" is in fact a label on the secondary ip address on the interface "eth0" which you can see if you
use command "ip addr show dev eth0". Here is an example of the output of this command taken on the
firewall running heartbeat that was active at the moment:

ip addr show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:aa brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet 10.3.14.150/24 brd 10.3.14.255 scope global secondary eth0:0
 inet6 fe80::20c:29ff:fe1e:dcaa/64 scope link
 valid_lft forever preferred_lft forever

Secondary IP address 10.3.14.150 that was added by heartbeat is highlighted in red. The "eth0:0" at the
very end of the output is the label assigned to this address, this label makes it appear as another inetrface in
the output of ifconfig, however it is not real inetrface. Here is the output of ifconfig on the same machine
at the same time when it was active in the HA pair:

Cluster configuration

218

ifconfig
eth0 Link encap:Ethernet HWaddr 00:0c:29:1e:dc:aa
 inet addr:10.3.14.108 Bcast:10.3.14.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe1e:dcaa/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:242381 errors:0 dropped:0 overruns:0 frame:0
 TX packets:41664 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:40022382 (40.0 MB) TX bytes:5926417 (5.9 MB)
 Interrupt:18 Base address:0x2000

eth0:0 Link encap:Ethernet HWaddr 00:0c:29:1e:dc:aa
 inet addr:10.3.14.150 Bcast:10.3.14.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 Interrupt:18 Base address:0x2000

It is important to understand the distinction because iptables does not recognize eth0:0 as an interface and
does not allow it in "-i" or "-o" clause. Firewall Builder follows the same rules as the target firewall platform
it prepares configuration for. This means you should build configuration in fwbuilder using interface "eth0"
and not "eth0:0".

Each cluster interface should have a Failover Group child object configured with corresponding interfaces
of the member firewalls. Configuration of this object implements interface mapping illustrated by Fig-
ure 8.1 and is shown below:

Figure 8.2. Failover Group object configuration

Firewall Builder GUI proides a way to configure some parameters for the failover protocols heartbeat and
OpenAIS. Click Edit protocol parameters button to open dialog for this:

Table 8.2.

Figure 8.3. Editing parameters for the
heartbeat protocol

Figure 8.4. Editing parameters for the
OpenAIS protocol

Cluster configuration

219

Firewall Builder only supports multicast or unicast heartbeat configuration. You can enter the address and
port number in the dialog. If you turn checkbox "Use unicast address" on, generated iptables commands
will match source and destination addresses of the corresponding interface of both member firewalls. If this
checkbox is off, it is assumed heartbeat is configured to use multicast and generated iptables commands
will only match this multicast address in both INPUT and OUTPUT chains.

As with heartbeat, you can configure ip address and port number for the OpenAIS protocol. There is no
unicast option here.

Cluster object should also have State Synchronization group child object. Create it using context menu
"Add State Synchronization Group" item if this object does not exist. In this object you need to configure
member interfaces that should be used for state synchronization. On Linux, state synchronization is done
using conntrackd daemon (conntrack-tools home page [http://conntrack-tools.netfilter.org/]). Configure
State Synchronization group object with interfaces of the member firewalls used to pass conntrackd pack-
ets:

Figure 8.5. State synchronization group object in the tree

The State Synchronization group object should look like this:

Figure 8.6. State synchronization group object parameters

Member firewalls and their inetrfaces appear in the panel in the right hand side of the dialog. Firewall
Builder uses this information to automatically generate iptables rules to permit conntrackd packets. Fire-

http://conntrack-tools.netfilter.org/
http://conntrack-tools.netfilter.org/

Cluster configuration

220

wall Builder assumes conntrackd is configured to send synchronization packets over dedicated interface
(which generally is a good idea anyway). You may use internal inetrface of the firewall for this purpose
as well. See examples of conntrackd configuration in Firewall Builder CookBook. You can configure ip
address and port number for the conntrack as well.

Figure 8.7. Editing parameters for the Conntrack state synchronization protocol

8.2. OpenBSD cluster configuration with Fire-
wall Builder

Documentation for BSD clusters coming soon...

8.3. PIX cluster configuration with Firewall
Builder

Firewall Builder supports PIX "lan based" failover configuration. Unlike in Linux or BSD, where each
interface of the firewall runs its own instance of failover protocol, PIX runs one instance of failover pro-
tocol over dedicated interface. PIX can also run state synchronization protocol over the same or another
dedicated interface. These dedicated interfaces should be connected via separate switch and do not see
regular traffic. Here is how this is implemented in Firewall Builder:

Like with all other supported firewall platforms, interface objects that belong to a cluster object serve to
establish association between actual interfaces of the member firewalls. Cluster interface object should
have the same name as corresponding member firewall interfaces. It should have Failover Group child
object which should be configured with interfaces of the member firewalls. You can create Failover Group
object using context menu item "Add Failover Group", the menu appears when you right mouse click on
the cluster interface object. Here is an example of correct interface mapping between cluster and member
firewalls:

Cluster configuration

221

Figure 8.8. Failover group objects and mapping between cluster and member
interfaces

The Failover Group object "cluster1:e0.101:members" is configured with interfaces "Ethernet0.101" of
both members:

Figure 8.9. Example of failover group object

Interface that is configured for the failover on the member firewall should be marked as "Dedicated
Failover". Use checkbox with this name in the interface object dialog to do this.

Cluster interface that corresponds to the failover interface of the members should be configured with
protocol "PIX failover protocol". Click on the "Edit protocol parameters" button to edit timeout, poll time
and the key.

Cluster interfaces that represent regular interfaces of the members also must have failover group objects;
that is where you add interfaces of the member firewalls. There is no need to configure protocol in these
failover groups because PIX does not run it over these interfaces. Regular interfaces should not be marked
as "Dedicated Failover".

Cluster object should have State Synchronization group child object. Create it using context menu "Add
State Synchronization Group" item if this object does not exist. In this object you need to configure member

Cluster configuration

222

interfaces that should be used for state synchronization. You can use separate dedicated interfaces or the
same interfaces used for failover. If these are separate, corresponding interface objects of the member
firewalls must be marked as "Dedicated Failover".

One of the member firewall interfaces used in the State Synchronization group must be marked as "master".
This is where you define which PIX unit is going to be the primary and which is going to be the secondary
in the HA pair.

Here is an example of the state synchronization and failover using the same interface Ethernet2:

Figure 8.10. Example of the state synchronization and failover using the same
interface Ethernet2

The State Synchronization Group object "State Sync Group" is configured with interfaces "Ethernet2" of
both members:

Figure 8.11. Example of state synchronization group object

Dedicated failover interfaces of the member firewalls must have IP addresses and these addresses must
be different but belong to the same subnet.

Built-in policy installer treats PIX clusters in a special way:

Cluster configuration

223

• For the PIX cluster, built-in installer installs generated configuration only on the master PIX unit. It
determines which one is the master by looking in the StateSyncGroup object (state synchronization
cluster group).

• Dialog where user enters authentication credentials and other parameters for the installer has a checkbox
that makes installer initiate copy of the configuration to the standby PIX if installation was successful.

8.4. Handling of the cluster rule set and mem-
ber firewalls rule sets

Normally, only the cluster object should have non-empty policy, NAT and routing rule sets, while member
firewall objects should have empty rule sets. In this case, Firewall Builder policy compilers will use rules
they find in the cluster. However, if a member firewall has rule set object of any type (Policy, NAT,
Routing) with the name the same as the name of the cluster object and the same type, then compilers will
use rules from the member firewall and ignore those found in the cluster. They also issue a warning that
looks like shown in Figure 8.12:

Figure 8.12. A warning shown when a rule set that belongs to the member firewall
overrides rule set that belongs to the cluster

Suggested use case for this feature is to create a small non-top rule set in the cluster which can be used
as a branch using a rule with action "Branch" to pass control to it. The cluster can define some rules in
this rule set, these rules are going to be common for all member firewalls. However if for some reason
you want to implement these rules differently for one member, you just create rule set with the same name
in it and add some different rules there. Of course two members can have the rule set with this name and
both will override the one that belongs to the cluster. The warning is only given if member firewall rule
set is not empty. If it exists and has the same name as the one that belongs to the cluster, but has no rules,
then the warning does not appear.

224

Chapter 9. Configuration of interfaces

9.1. General principles
Firewall Builder 4.0 introduced support incremental management of the configuration of interfaces. It
can add and remove IP addresses, create and destroy VLAN interfaces, and add and remove bridge ports
and bonding interface members. Incremental management means generated scripts can add or remove
interfaces or addresses only when needed, without having to completely remove configuration and then
re-add it back.

For example, in case of IP addresses of interfaces, the script checks if the address configured in the Firewall
Builder GUI really exists on the interface it should belong to. If it is not there, the script adds it, but if it
exists, the script does nothing. Running the script again therefore does not disturb the configuration at all.
It is not going to remove addresses and then add them back. The same happens with VLAN interfaces,
bridge ports, and bonding interfaces.

Tip

If someone reconfigures interfaces, VLANs, or IP addresses on the machine, just run the Firewall
Builder-generated script again and it will restore configuration to the state defined in the GUI
without removing everything down first and reconfiguring from scratch. The script runs only
those commands that are necessary to undo the changes made by hand.

Not all of these features are available on every supported OS. Table 9.1 shows this:

Table 9.1.

Feature Linux OpenBSD
FreeBSD

Cisco IOS Cisco ASA
(PIX)

IP address management yes yes yes yes

Incremental IP address management yes yes no no

VLAN interfaces yes yes no no

Incremental management of VLAN interfaces yes yes no no

Bridge ports yes yes no no

Incremental management of bridge ports yes yes no no

Bonding interfaces yes no no no

Incremental management of bonding interfaces partial no no no

MTU Configuration no yes no no

Cluster configuration: carp and pfsync on Open-
BSD, interface configuration for failover on PIX,
interface configuration for clustering protocols
on Linux

yes yes no yes

The most complete implementation is available on Linux where generated script can incrementally manage
IP addresses, VLAN interfaces, bridge ports, and partially bonding interfaces.

Configuration of interfaces

225

9.2. IP Address Management
• The generated script includes shell code to manage IP addresses of interfaces if checkbox "Configure

interfaces" is turned on in the "Script" tab of the firewall object "advanced" settings dialog. By default,
it is turned off.

• The script uses the ip tool on Linux which should be present on the firewall. The script checks if it is
available and aborts if it cannot find it. The script uses ifconfig to manage addresses on BSD machines.

• The script checks if IP address configured in the GUI exists on the firewall and adds it if necessary.

• If the script finds an address on the firewall that is not configured in the fwbuilder GUI, it deletes it.

9.2.1. IP Address Management on Linux

The generated script includes shell code to manage IP addresses if the checkbox "Configure interfaces" is
turned on in the "Script" tab of the firewall object "advanced" settings dialog. By default, it is turned off.

The script uses ip tool which should be present on the friewall. The script checks if it is available and
aborts if it can not find it. The path to this tool can be changed in the "Host OS" settings dialog of the
firewall object. The script then checks if the IP address of each interface configured in the GUI exists on
the firewall and adds it if necessary. If the script finds ip address on the firewall that is not configured in
the Firewall Builder GUI, it removes it.

If the checkbox "Clear ip addresses and bring down interfaces not configured in fwbuilder" is turned on
in the "Script" tab of firewall settings dialog, the script deletes all ip address of all interfaces that are not
configured in Firewall Builder GUI and brings interfaces that are missing in Firewall Builder but are found
on the firewall down. The goal is to ensure that firewall rules operate in the environment that matches
assumptions under which they were generated. If the program generated rules assuming some address does
not belong to the firewall, but in reality it does, packets may show up in the wrong chain that will lead to
the wrong behavior of the firewall. This feature is off by default.

The generated script recognizes command line parameters "start", "stop", "reload", "inetrfaces" and
"test_inetrfaces". When the script runs with the parameter "inetrfaces" it performs only inetrface config-
uration as described above. The command-line parameter "start" makes it do that and then load iptables
rules. Parameter "test_inetrfaces" makes the script perform all the checks of IP addresses and print com-
mands that it would use to add and remove addresses but not actually execute them.

The generated script can manage both IPv4 and IPv6 addresses.

To illustrate how IP address management works, consider example Figure 9.1. Interface eth0 has two IPv4
and two IPv6 addresses:

Configuration of interfaces

226

Figure 9.1. Example Configuration with Several IPv4 and IPv6 Addresses

Initial configuration of the addresses on the machine looks like this:

root@linux-test-1:~# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:aa brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet6 fe80::20c:29ff:fe1e:dcaa/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.1/24 brd 10.1.1.255 scope global eth1
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever

IPv4 address 10.3.14.108 and IPv6 address fe80::20c:29ff:fe1e:dcaa/64 configured in fwbuilder are al-
ready present on the machine, but the other IPv4 and IPv6 addresses are not. First, lets see what happens
when the script generated by fwbuilder runs with command line parameter "test_interfaces":

root@linux-test-1:~# /etc/fw/linux-test-1-s.fw test_interfaces
Adding ip address: eth0 192.0.2.1/24
ip addr add 192.0.2.1/24 dev eth0
ifconfig eth0 up
Adding ip address: eth0 2001:db8:1f0e:162::2/32
ip addr add 2001:db8:1f0e:162::2/32 dev eth0
ifconfig eth0 up

The script detected existing addresses and did nothing about them but printed commands it would execute
to add missing addresses. We can now run the script with parameter "interfaces" to actually reconfigure
the machine, then run it again to demonstrate that after addresses were added, the script is not going to
make any unnecessary changes:

Configuration of interfaces

227

root@linux-test-1:~# /etc/fw/linux-test-1-s.fw interfaces
Adding ip address: eth0 192.0.2.1/24
Adding ip address: eth0 2001:db8:1f0e:162::2/32
root@linux-test-1:~#
root@linux-test-1:~# /etc/fw/linux-test-1-s.fw test_interfaces
root@linux-test-1:~#

IP address management works both ways: if the administrator deletes an address in the Firewall Builder
GUI, the script will remove it on the machine. To illustrate this, I am going to remove the second IPv4
and IPv6 addresses from the same interface eth0 object and then recompile the script and run it again on
the machine:

Figure 9.2. Configuration after Additional IPv4 and IPv6 Addresses Have Been
Removed

root@linux-test-1:~# /etc/fw/linux-test-1-s.fw test_interfaces
Removing ip address: eth0 192.0.2.1/24
ip addr del 192.0.2.1/24 dev eth0
ifconfig eth0 up
Removing ip address: eth0 2001:db8:1f0e:162::2/32
ip addr del 2001:db8:1f0e:162::2/32 dev eth0
ifconfig eth0 up

As you can see, the script would delete these addresses on the machine to bring its actual configuration
in sync with configuration defined in Firewall Builder.

Note

The script does not delete "scope link" and "scope host" addresses from inetrfaces.

When you change the IP address of an interface in a Firewall Builder object and then run the
generated script on the firewall, the script first adds new address and then removes the old address
from the interface.

This flexible incremental management of IP addresses helps simplify basic configuration of the firewall
OS. One can use standard OS script and configuration files to configure the machine with just one IP
address of one interface, used for management, and let the script generated by fwbuilder manage all other
IP addresses of all interfaces. With this, Firewall Builder becomes a configuration GUI for the whole
network setup of the firewall machine.

Configuration of interfaces

228

9.2.2. IP Address Management on BSD

Firewall Builder usually generates a firewall script file to configure system parameters such as network
interfaces, IP addresses, static routes. Starting with Firewall Builder V4.2, FreeBSD firewalls can be con-
figured to generate system settings in rc.conf format. Section 12.6.1.1 explains how to configure Firewall
Builder for FreeBSD firewalls using rc.conf format.

All configuration information shown below assumes the standard behavior where Firewall Builder gener-
ates a firewall script to manage system settings.

The generated script includes shell code to manage ip addresses if checkbox "Configure interfaces" is
turned on in the "Script" tab of the firewall object "advanced" settings dialog. By default, it is turned off.

The script uses the ifconfig utility to add and remove IP addresses. The path to ifconfig can be changed in
the "Host OS" settings dialog of the firewall object. The script checks if the IP address of each interface
configured in the GUI exists on the firewall and adds it if necessary. If the script finds the IP address on
the firewall that is not configured in the Firewall Builder GUI, it removes it. The goal is to ensure that
firewall rules operate in the environment that matches assumptions under which they were generated.

The generated script can manage both IPv4 and IPv6 addresses.

To illustrate how IP address management works, consider the example Figure 9.3. All interfaces have both
IPv4 and IPv6 addresses:

Figure 9.3. Example Configuration with Several IPv4 and IPv6 Addresses

Initial configuration of the addresses on the machine looks like this:

Configuration of interfaces

229

ifconfig -a
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33208
 groups: lo
 inet 127.0.0.1 netmask 0xff000000
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4
pcn0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:25
 groups: egress
 media: Ethernet autoselect (autoselect)
 inet 10.3.14.50 netmask 0xffffff00 broadcast 10.3.14.255
 inet6 fe80::20c:29ff:fe83:4d25%pcn0 prefixlen 64 scopeid 0x1
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:2f
 media: Ethernet autoselect (1000baseT full-duplex,master)
 status: active
 inet 10.1.1.50 netmask 0xffffff00 broadcast 10.1.1.255
 inet6 fe80::20c:29ff:fe83:4d2f%em0 prefixlen 64 scopeid 0x2
enc0: flags=0<> mtu 1536
pflog0: flags=141<UP,RUNNING,PROMISC> mtu 33208
 groups: pflog

Interface pcn0 already has IPv4 and IPv6 addresses that match those configured in Firewall Builder, but
interface em0 only has one IPv4 address and only link-local IPv6 address and does not have other addresses
configured in Firewall Builder. Lets see what happens when the script generated by Firewall Builder runs
on the machine:

/etc/fw/openbsd-test-1-s.fw
Activating firewall script generated Tue Feb 23 16:39:30 2010 by vadim
net.inet.ip.forwarding: 0 -> 1
Adding ip address: em0 192.0.2.12 netmask 0xffffff00
Adding ip address: em0 2001:db8:1f0e:162::20 prefixlen 32
#

The script detected existing addresses and did nothing about them. It also added missing addresses. Here
is what we get:

Configuration of interfaces

230

ifconfig -A
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33208
 groups: lo
 inet 127.0.0.1 netmask 0xff000000
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4
pcn0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:25
 groups: egress
 media: Ethernet autoselect (autoselect)
 inet 10.3.14.50 netmask 0xffffff00 broadcast 10.3.14.255
 inet6 fe80::20c:29ff:fe83:4d25%pcn0 prefixlen 64 scopeid 0x1
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:2f
 media: Ethernet autoselect (1000baseT full-duplex,master)
 status: active
 inet 10.1.1.50 netmask 0xffffff00 broadcast 10.1.1.255
 inet6 fe80::20c:29ff:fe83:4d2f%em0 prefixlen 64 scopeid 0x2
 inet 192.0.2.12 netmask 0xffffff00 broadcast 192.0.2.255
 inet6 2001:db8:1f0e:162::20 prefixlen 32
enc0: flags=0<> mtu 1536
pflog0: flags=141<UP,RUNNING,PROMISC> mtu 33208
 groups: pflog

I am going to run the script again to demonstrate that after addresses were added, it is not going to make
any unnecessary changes:

/etc/fw/openbsd-test-1-s.fw
Activating firewall script generated Tue Feb 23 16:39:30 2010 by vadim
net.inet.ip.forwarding: 1 -> 1

IP address management works both ways: if the administrator deletes an address in the Firewall Builder
GUI, the script will remove it on the machine. To illustrate this, I am going to remove the second IPv4
and IPv6 addresses from the same interface em0 object and then recompile the script and run it again on
the machine:

Figure 9.4. Configuration After Additional IPv4 and IPv6 Addresses Have Been
Removed

Configuration of interfaces

231

/etc/fw/openbsd-test-1-s.fw
Activating firewall script generated Tue Feb 23 16:46:26 2010 by vadim
net.inet.ip.forwarding: 1 -> 1
Removing ip address: em0 192.0.2.12 netmask 0xffffff00
Removing ip address: em0 2001:db8:1f0e:162::20 prefixlen 32
#

As you can see, the script deleted these addresses on the machine to brought its actual configuration in
sync with configuration defined in Firewall Builder.

Note

The script does not delete "scope link" and "scope host" addresses from interfaces.

When you change IP address of an interface in Firewall Builder object and then run the generated
script on the firewall, the script first adds new address and then removes the old address from
the interface.

This flexible incremental management of IP addresses helps simplify basic configuration of the firewall
OS. One can use standard OS script and configuration files to configure the machine with just one IP
address of one interface, used for management, and let the script generated by Firewall Builder manage
all other IP addresses of all interfaces. With this, Firewall Builder becomes a configuration GUI for the
whole network setup of the firewall machine.

9.3. Interface Names
By default, Firewall Builder attempts to determine an interfaces function based on the name of the interface.
For example, on Linux if an interface is named eth2.102 based on the interface name Firewall Builder will
determine that the interface appears to be a VLAN interface with parent interface eth2 and VLAN ID 102.

If a user tries to create an interface with a name that doesn't match the expected patterns Firewall Builder
will generate an error. For example, attempting to create the same eth2.102 interface from our previous
example as an interface object directly under a firewall object Firewall Builder will generate the error
shown in Figure 9.5.

Figure 9.5. Error Message When Incorrect VLAN Interface Is Created

If instead the eth2.102 interface were to be created as a child object under the eth2 interface then Firewall
Builder would not generate the error since the VLAN interface eth2.102 should be a sub-interface of eth2.
Note that in this case Firewall Builder will automatically set the interface type to VLAN and will set the
VLAN ID to 102.

You can view and edit the interface type and VLAN ID by clicking the "Advanced Interface Settings ..."
button in the editor panel of the interface. An example of the advanced settings for eth2.102, when created
as a child interface of eth2, is shown in diagram Figure 9.6.

Configuration of interfaces

232

Figure 9.6. Advanced Settings for eth2.102 Interface

Sometimes you may want to override the default behavior where Firewall Builder expects interface names
to follow a specific naming convention. To disable this feature, open the Firewall Builder preferences
window, click the Objects tab and click the Interface sub-tab in the lower window. Uncheck the checkbox
labeled "Verify interface names and autoconfigure their parameters using known name patterns".

Figure 9.7. Disabling Automatic Name Checking

In this mode, Firewall Builder will not auto-populate any fields, even if the interface name matches an
expected pattern like eth2.102. All interface parameters, such as interface type and VLAN ID, must be
configured manually.

Configuration of interfaces

233

9.4. Advanced Interface Settings

9.4.1. Setting Interface MTU
Starting with Firewall Builder V4.2, it is possible to configure an interface's MTU (Maximum Transmis-
sion Unit). Currently this feature is only available on BSD (OpenBSD and FreeBSD) firewalls.

To configure an interface's MTU value, double-click the interface to open it for editing in the Editor
Panel. Click the Advanced Interface Settings button. This will open the configuration window shown in
Figure 9.8.

Figure 9.8. Modifying Interface MTU on a BSD Firewall

Click the checkbox called Set MTU and adjust the MTU to the desired value. Click OK.

For example, configuring this on interface eth0 will result in the following command being included in
the generated firewall script.

ifconfig eth0 mtu 2500

9.5. VLAN Interfaces
• The generated script includes shell code to manage VLAN interfaces if the checkbox "Configure VLAN

interfaces" is turned on in the "Script" tab of the firewall object "advanced" settings dialog. By default,
it is turned off.

• The script uses the vconfig tool which should be present on the firewall. The script checks if it is available
and aborts if it cannot find it.

• The script checks if the VLAN interface configured in the GUI exists on the firewall and creates it if
necessary.

• If the script finds a VLAN interface on the firewall that is not configured in the fwbuilder GUI, it deletes
it.

Configuration of interfaces

234

9.5.1. VLAN Interface Management on Linux

A script generated by Firewall Builder and intended for a Linux firewall can create and remove VLAN
interfaces if the checkbox "Configure VLAN interfaces" is turned on in the "Script" tab of the firewall
object "advanced" settings dialog. By default, it is turned off.

As with IP addresses, the script manages VLAN interfaces incrementally; that is, it compares actual con-
figuration of the firewall machine to the configuration defined in Firewall Builder and then adds or re-
moves VLAN interfaces. Running the same script multiple times does not make any unnecessary changes
on the firewall. If actual configuration matches objects created in the Firewall Builder GUI, the script does
not perform any actions and just exits.

The script uses the utility vconfig to configure VLAN interfaces. It checks if the utility is present on the
firewall machine and aborts execution if it is not found. If this utility is installed in an unusual place on
your machine, you can configure the path to it in the "Host OS" settings dialog of the firewall object.

VLAN interfaces can have different names on Linux, depending on the naming convention established us-
ing "vconfig set_name_type" command. Four naming types are available: VLAN_PLUS_VID (vlan0005),
VLAN_PLUS_VID_NO_PAD (vlan5), DEV_PLUS_VID (eth0.0005), DEV_PLUS_VID_NO_PAD
(eth0.5). Fwbuilder supports all four, you just assign the name to the VLAN interface in the GUI and
generated script will automatically issue "vconfig set_name_type" command to choose correct name type.

To illustrate VLAN management on Linux, consider the firewall object "linux-test-vlan-1" shown on Fig-
ure 9.9:

Figure 9.9. Example Configuration; VLAN interfaces Added to eth1

The interface eth1 is configured as "unnumbered" interface, we are going to add VLAN subinterfaces to
it. To do this, select this interface in the tree and right-click to open the right-click menu:

Configuration of interfaces

235

Figure 9.10. Adding a VLAN Subinterface

The new subninterface is created with the generic name "Interface". To make it a VLAN interface we
should rename it:

Configuration of interfaces

236

Figure 9.11. VLAN Subinterface eth1.100

The name of the interface is eth1.100, which implies VLAN ID 100. Firewall Builder is aware of the
naming schemes of VLAN interfaces on Linux and automatically recognizes this name and sets interface
type to "VLAN" and its VLAN ID to "100". To inspect and change its VLAN ID, click the "Advanced
Interface Settings" button:

Configuration of interfaces

237

Figure 9.12. VLAN Interface Parameters

Note

The program verifies the VLAN ID configured in the VLAN interface parameters dialog and
compares it to the interface name to make sure they match. It does not let you set a VLAN ID that
does not match interface name because vconfig would not let you do it on the Linux machine.
The program also verifies subinterface name to make sure it matches one of the supported naming
schemes. It allows names such as "eth1.100", "eth1.0100", "vlan100", "vlan0100" but would not
allow any other name for the VLAN subinterface.

I am going to add a second VLAN interface eth1.101 and add IPv4 addresses to both VLAN interfaces.
The final configuration is shown in Figure 9.13:

Figure 9.13. Two VLAN Interfaces with IP Addresses

The generated script includes the following shell function that sets up all VLANs and IP addresses:

Configuration of interfaces

238

configure_interfaces() {
 :
 # Configure interfaces
 update_vlans_of_interface "eth1 eth1.100 eth1.101"
 clear_vlans_except_known eth1.100@eth1 eth1.101@eth1
 update_addresses_of_interface "lo ::1/128 127.0.0.1/8" ""
 update_addresses_of_interface "eth0 fe80::20c:29ff:fe1e:dcaa/64 10.3.14.108/24" ""
 update_addresses_of_interface "eth1" ""
 update_addresses_of_interface "eth1.100 10.1.1.1/24" ""
 update_addresses_of_interface "eth1.101 10.1.2.1/24" ""
}

The call to update_vlans_of_interface adds and removes VLANs as needed to make sure VLAN in-
terfaces eth1.100 and eth1.101 exist. The call to clear_vlans_except_known removes other VLAN
interfaces that might exist on the machine but were not configured in Firewall Builder. Calls to
update_addresses_of_interface set up IP addresses. To test, I am going to copy the generated script to
the firewall and run it with the command-line parameter "test_interfaces". This command does not make
any changes on the firewall but only prints commands it would have executed to configure VLANs and
addresses:

root@linux-test-1:~# /etc/fw/linux-test-vlan-1.fw test_interfaces
Adding VLAN interface eth1.100 (parent: eth1)
vconfig set_name_type DEV_PLUS_VID_NO_PAD
vconfig add eth1 100
ifconfig eth1.100 up
Adding VLAN interface eth1.101 (parent: eth1)
vconfig set_name_type DEV_PLUS_VID_NO_PAD
vconfig add eth1 101
ifconfig eth1.101 up
Interface eth1.100 does not exist
Adding ip address: eth1.100 10.1.1.1/24
ip addr add 10.1.1.1/24 dev eth1.100
ifconfig eth1.100 up
Interface eth1.101 does not exist
Adding ip address: eth1.101 10.1.2.1/24
ip addr add 10.1.2.1/24 dev eth1.101
ifconfig eth1.101 up

The script uses vconfig to set up the naming scheme and add VLAN interfaces, then uses IP to add ad-
dresses. To make the change, run the script with the command-line parameter "interfaces":

root@linux-test-1:~# /etc/fw/linux-test-vlan-1.fw interfaces
Adding VLAN interface eth1.100 (parent: eth1)
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 100 to IF -:eth1:-
Adding VLAN interface eth1.101 (parent: eth1)
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 101 to IF -:eth1:-
Adding ip address: eth1.100 10.1.1.1/24
Adding ip address: eth1.101 10.1.2.1/24

To inspect the result, use the "ip addr show" command:

Configuration of interfaces

239

root@linux-test-1:~# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:aa brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet6 fe80::20c:29ff:fe1e:dcaa/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever
4: eth1.100@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.1/24 scope global eth1.100
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever
5: eth1.101@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet 10.1.2.1/24 scope global eth1.101
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever

Let's try to run the same script again:

root@linux-test-1:~# /etc/fw/linux-test-vlan-1.fw interfaces
root@linux-test-1:~#

The script detected that both VLAN interfaces already exist and have correct IP addresses and did nothing.

Now I am going to change the VLAN ID on one of the interfaces and demonstrate how the script executes
the change on the firewall. First, I rename interface eth1.100 to eth1.102:

Figure 9.14. Configuration after Renaming VLAN Interface eth1.100 to eth1.102

Then I recompile the firewall, copy the generated script to the firewall and run it:

Configuration of interfaces

240

root@linux-test-1:~# /etc/fw/linux-test-vlan-1.fw interfaces
Adding VLAN interface eth1.102 (parent: eth1)
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 102 to IF -:eth1:-
Removing VLAN interface eth1.100 (parent: eth1)
Removed VLAN -:eth1.100:-
Adding ip address: eth1.102 10.1.1.1/24

The script added the new VLAN interface eth1.102 first, then removed eth1.100 and added the IP address
to eth1.102.

Now lets rename both VLAN interfaces to use different naming scheme:

Figure 9.15. Configuration after Renaming VLAN Interfaces eth1.101 and eth1.102

Note

There is a limitation in the implementation of the incremental VLAN management at this time.
The generated script cannot correctly rename VLAN interfaces, (that is, change the name) with-
out changing the VLAN ID. There are two workarounds: (1) you can remove VLAN interfaces
manually and then run the script to let it add new ones, or (2) you can run the script twice. On
the first run, it will issue errors because it can't add the VLAN interfaces with different name but
the same VLAN ID, but it can delete old VLAN interfaces. On the second run it adds the VLAN
interfaces with new names.

root@linux-test-1:~# /etc/fw/linux-test-vlan-1.fw interfaces
Adding VLAN interface vlan0101 (parent: eth1)
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 101 to IF -:eth1:-
Adding VLAN interface vlan0102 (parent: eth1)
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 102 to IF -:eth1:-
Adding ip address: vlan0102 10.1.1.1/24
Adding ip address: vlan0101 10.1.2.1/24

Here is how final configuration looks:

Configuration of interfaces

241

root@linux-test-1:~# ip addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:aa brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet6 fe80::20c:29ff:fe1e:dcaa/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever
4: vlan0101@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet 10.1.2.1/24 scope global vlan0101
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever
5: vlan0102@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.1/24 scope global vlan0102
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever

9.5.2. VLAN Interface Management on BSD

Unlike on Linux, on OpenBSD, the name of the VLAN interfaces is restricted to the "vlanNNN" scheme.
We start with a basic firewall object with two interfaces and will add VLAN interfaces to interface em0.
Note that em0 is configured as "unnumbered", this is a requirement for the VLAN parent interface object.

Figure 9.16. OpenBSD Test Firewall Object

To create VLAN subinterfaces, select the parent interface object in the tree and right-click to open the
context menu:

Configuration of interfaces

242

Figure 9.17. Adding a VLAN Subinterface

The new interface is created with generic name "Interface" and needs to be renamed:

Configuration of interfaces

243

Figure 9.18. VLAN Subinterface vlan100

Firewall Builder is aware of the naming convention for VLAN interfaces on BSD and automatically rec-
ognized vlan100 as a VLAN interface with VLAN ID 100. To inspect or change the VLAN ID, click
"Advanced Interface Settings" button:

Configuration of interfaces

244

Figure 9.19. Editing VLAN Interface Parameters

Note

Firewall Builder verifies that the name of the subinterface is acceptable as the name of a VLAN
interface on OpenBSD system. You can use name that looks like "vlan100" but it won't accept
"em0.100" or any other.

I am going to add second VLAN interface eth1.101 and add IPv4 addresses to both VLAN interfaces. The
final configuration is shown in Figure 9.20:

Figure 9.20. Two VLAN Interfaces with IP Addresses

Compiling this firewall object produces script /etc/fw/openbsd-test-vlan-1.fw and PF configuration file /
etc/fw/openbsd-test-vlan-1.conf. To activate the firewall and configure the interface, run script /etc/fw/
openbsd-test-vlan-1.fw:

Configuration of interfaces

245

/etc/fw/openbsd-test-vlan-1.fw
Activating firewall script generated Fri Feb 26 14:57:54 2010 by vadim
net.inet.ip.forwarding: 0 -> 1
Creating vlan interface vlan100
Creating vlan interface vlan101
Adding VLAN interface vlan100 (parent: em0)
Adding VLAN interface vlan101 (parent: em0)
Adding ip address: vlan100 10.1.1.1 netmask 0xffffff00
Adding ip address: vlan101 10.1.2.1 netmask 0xffffff00

Here is how configuration of the VLAN interfaces looks like in the output of ifconfig:

vlan100: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:2f
 vlan: 100 priority: 0 parent interface: em0
 groups: vlan
 inet6 fe80::20c:29ff:fe83:4d2f%vlan100 prefixlen 64 scopeid 0x6
 inet 10.1.1.1 netmask 0xffffff00 broadcast 10.1.1.255
vlan101: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:2f
 vlan: 101 priority: 0 parent interface: em0
 groups: vlan
 inet6 fe80::20c:29ff:fe83:4d2f%vlan101 prefixlen 64 scopeid 0x7
 inet 10.1.2.1 netmask 0xffffff00 broadcast 10.1.2.255

Let's try to run the same script again:

/etc/fw/openbsd-test-vlan-1.fw
Activating firewall script generated Fri Feb 26 14:57:54 2010 by vadim
net.inet.ip.forwarding: 0 -> 1

The script detected that both VLAN interfaces already exist and have correct IP addresses and made no
changes to their configuration.

Let's change the VLAN ID of the interface vlan100. I cannot change the VLAN ID without changing its
name. When I rename interface vlan100 to vlan102 in Firewall Builder, it changes its VLAN ID automat-
ically.

Figure 9.21. Interface vlan100 Renamed to vlan102

Configuration of interfaces

246

Here is what happens when I run the generated script on the firewall:

/etc/fw/openbsd-test-vlan-1.fw
Activating firewall script generated Fri Feb 26 15:57:03 2010 by vadim
net.inet.ip.forwarding: 1 -> 1
Deleting vlan interface vlan100
Creating vlan interface vlan102
Adding VLAN interface vlan102 (parent: em0)
Adding ip address: vlan102 10.1.1.1 netmask 0xffffff00

Ifconfig shows that interface vlan100 was removed and vlan102 added:

vlan101: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:2f
 vlan: 101 priority: 0 parent interface: em0
 groups: vlan
 inet6 fe80::20c:29ff:fe83:4d2f%vlan101 prefixlen 64 scopeid 0x14
 inet 10.1.2.1 netmask 0xffffff00 broadcast 10.1.2.255
vlan102: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:83:4d:2f
 vlan: 102 priority: 0 parent interface: em0
 groups: vlan
 inet6 fe80::20c:29ff:fe83:4d2f%vlan102 prefixlen 64 scopeid 0x17
 inet 10.1.1.1 netmask 0xffffff00 broadcast 10.1.1.255

9.6. Bridge ports
Bridge management for Linux firewalls was introduced in Firewall Builder V4.0 and support for bridges
in BSD (OpenBSD and FreeBSD) firewalls was added in Firewall Builder V4.2. The generated script can
manage bridge interfaces as follows:

• The generated script includes shell code to manage bridge interfaces if checkbox "Configure bridge
interfaces" is turned on in the "Script" tab of the firewall object "advanced" settings dialog. By default,
it is turned off.

• On Linux firewalls, the generated firewall script uses brctl tool which should be present on the firewall.
The script checks if brctl is available and aborts if it cannot find it.

• On OpenBSD firewalls, the generated firewall script uses brconfig tool which should be present on the
firewall. The script checks if brconfig is available and aborts if it cannot find it.

• On FreeBSD firewalls, the generated firewall script uses ifconfig tool which should be present on the
firewall. The script checks if ifconfig is available and aborts if it cannot find it.

• The script checks if the bridge interface configured in the GUI exists on the firewall and creates it if
necessary.

• It then checks if the bridge interface on the firewall is configured with bridge ports that were defined in
the GUI. It adds those that are missing and removes those that are not configured in the GUI.

• Adding VLAN interfaces as bridge ports, as well as mixing regular Ethernet and VLAN interfaces is
supported. That is, the following configuration can be configured in Firewall Builder and the generated
script will create it:

Configuration of interfaces

247

bridge name bridge id STP enabled interfaces
br0 8000.000c29f6bebe no eth4.102
 eth5

• In order to use a VLAN interface as bridge port, it needs to be created twice in the GUI. The first time, it
is created as a child of the regular Ethernet interface and has type "VLAN". The second interface object
with the same name should be created as a child of a bridge interface with a type "ethernet".

9.6.1. Enabling Bridge Interface Management
To enable Firewall Builder bridge interface management, click the "Configure bridge interfaces" option
in the Firewall Settings of the firewall that will include bridge interfaces.

Figure 9.22. Example Configuration; Interfaces eth1 and eth2 Will Become Bridge
Ports

With this setting enabled Firewall Builder the generated firewall script will manage bridge interfaces on
the firewall incrementally. This includes removing any bridge interfaces that are defined on the firewall
system but are not defined in the Firewall Builder configuration.

Note

You can use Firewall Builder to configure rules for firewalls that have a bridge interface(s) that
are not being created and managed by the Firewall Builder generated script. In this case, you
need to create an interface object in Firewall Builder that has a name that matches the name of
the bridge interface on the firewall system.

For example, if you have a Linux firewall that is already configured with a bridge interface called
br0, and you don't want Firewall Builder to manage creating the interface, create an interface

Configuration of interfaces

248

object on your firewall called br0 with no child objects. Use this interface object in rules to
represent the br0 interface.

9.6.2. Bridge Interface Management on Linux
On Linux firewalls, the script generated by Firewall Builder can create and remove bridge interfaces such
as "br0" and also add and remove regular Ethernet interfaces as bridge ports. For the firewall script to
manage bridge interfaces this option must be enabled as shown in Section 9.6.1. By default, this option
is disabled.

As with IP addresses and vlans, the script manages bridge incrementally. It compares actual configuration
of the firewall with objects defined in the Firewall Builder GUI and then adds or removes bridge interfaces
and bridge ports. Running the same script multiple times does not make any unnecessary changes on
the firewall. If actual configuration matches objects created in the Firewall Builder GUI, script does not
perform any actions and just exits.

The script uses utility brctl to configure the bridge. It checks if the utility is present on the firewall machine
and aborts execution if it is not found. If this utility is installed in an unusual place on your machine, you
can configure the path to it in the "Host OS" settings dialog of the firewall object.

To illustrate bridge management on Linux, consider the firewall object "linux-test-bridge-1" shown on
Figure 9.23:

Figure 9.23. Example Configuration; Interfaces eth1 and eth2 Will Become Bridge
Ports

To build the bridge, I need to create bridge interface "br0". This interface is just regular child object of
the firewall object in the tree, to create it, select the firewall and right-click to open the context menu, then
choose the item "New Interface". The new interface is created with generic name "Interface", rename it to
"br0". At this point we have interfaces br0, eth1, and eth2 but the latter two are not configured as bridge
ports yet. Interface br0 is not a bridge yet, either.

Figure 9.24. Bridge Interface br0

Configuration of interfaces

249

To make br0 a bridge, open it in the editor by double-clicking it in the tree and then click the "Advanced
Interface Settings" button. This opens a dialog where you can change the interface type and configure
some parameters. Set the type to "bridge" and turn STP on if you need it.

Figure 9.25. Configuring Bridge Interface Type

To make eth1 and eth2 bridge ports, use Cut and Paste operations on the objects in the tree. Paste both
interface objects into the br0 interface so that they move to the position right under it in the tree as shown
in Figure 9.26. Notice how the program automatically recognized them as bridge ports and showed this
in the second column of the tree.

Figure 9.26. Configuring Bridge Ports

Note

I have started with a firewall object that already had interface objects for eth1 and eth2, but this
is not necessary. You can add bridge ports by creating new interface objects under the bridge
interface using the right-click context menu and selecting "New Interface".

Notice that bridge ports cannot have IP addresses of their own and corresponding items in the context
menu are disabled:

Configuration of interfaces

250

Figure 9.27. Functions Disabled for Bridge Port Subinterfaces

To complete interface configuration, we need to add an IP address to interface br0 if it needs one. I am
going to add address 10.1.1.1/24 to test with. Then I can compile and run the script on the firewall.

The firewall machine where I am going to run generated script has interfaces eth0, eth1, and eth2 but does
not have interface br0 yet. Interfaces eth1 and eth2 are not configured as bridge ports. Lets see how the
script generated by Firewall Builder reconfigures this machine:

root@linux-test-1:~# /etc/fw/linux-test-bridge-1.fw interfaces
Activating firewall script generated Fri Feb 26 16:53:05 2010 by vadim
Running prolog script
Creating bridge interface
Updating bridge configuration: addif br0 eth1
Updating bridge configuration: addif br0 eth2
Adding ip address: br0 10.1.1.1/24
Verifying interfaces: lo eth0 br0 eth1 eth2

Using ip and brctl tools to verify configuration:

Configuration of interfaces

251

root@linux-test-1:~# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:aa brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet6 fe80::20c:29ff:fe1e:dcaa/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:be brd ff:ff:ff:ff:ff:ff
 inet6 fe80::20c:29ff:fe1e:dcbe/64 scope link
 valid_lft forever preferred_lft forever
5: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.1/24 scope global br0
 inet6 fe80::18cb:52ff:fe4b:c6b1/64 scope link
 valid_lft forever preferred_lft forever

root@linux-test-1:~# brctl show
bridge name bridge id STP enabled interfaces
br0 8000.000c291edcb4 no eth1
 eth2

Now I am going to add another bridge port eth3 to br0, recompile the script, and run it on the firewall.
First, add eth3 bridge port in the GUI:

Figure 9.28. Adding a Third Bridge Port

root@linux-test-1:~# /etc/fw/linux-test-bridge-1.fw interfaces
Updating bridge configuration: addif br0 eth3

All the script did is add eth3 to br0 bridge. New bridge configuration looks like this:

Configuration of interfaces

252

root@linux-test-1:~# brctl show
bridge name bridge id STP enabled interfaces
br0 8000.000c291edcb4 no eth1
 eth2
 eth3

Tip

The change that added eth3 to the bridge caused a bridge loop and consequently nasty ARP storm
inside my VMWare ESXi server where the virtual machine I used to test bridge configuration
was running. I had three virtual switches but I forgot that eth2 and eth3 were attached to the same
virtual switch. Needless to say, this ARP storm promptly killed ESXi. Now I am using the traffic
shaping feature in ESXi to throttle traffic on the back-end virtual switches that I am using only
for testing. Beware of bridge loops when you work with bridging firewalls.

Now let's remove the bridge port in the GUI and see what happens. I am going to delete object eth3 in the
GUI, recompile, and run the script on the firewall again:

root@linux-test-1:~# /etc/fw/linux-test-bridge-1.fw interfaces
Updating bridge configuration: delif br0 eth3

root@linux-test-1:~# brctl show
bridge name bridge id STP enabled interfaces
br0 8000.000c291edcb4 no eth1
 eth2

As expected, the script returned the bridge configuration to the state it was in before I added eth3.

9.6.2.1. Bridge with VLAN Interfaces as Bridge Ports

Firewall Builder can generate configuration for the bridging firewall using VLAN interfaces as bridge
ports; however, there is a twist to this. Recall from Section 9.5 that VLANs are created in Firewall Builder
as subinterfaces under their respective parent interface. That is, the VLAN interface "eth1.100" is an in-
terface object that sits in the tree right under interface "eth1":

Figure 9.29. VLAN Subinterface eth1.100

As we have seen in Section 9.6.2 and Section 9.6.2.1, bridge ports are also represented by interface objects
located in the tree under corresponding bridge interface, as shown in Figure 9.30:

Configuration of interfaces

253

Figure 9.30. Bridge Ports are Child Objects of the Bridge Interface

If we want eth1.100 to work as a bridge port, it must be created twice, once as a child of interface eth1
and second time as a child of interface br0. The first copy represents it as a VLAN subinterface while the
second one represents a bridge port.

Figure 9.31. eth1.100 and eth1.101: VLAN Interfaces Acting as Bridge Ports

9.6.3. Bridge Interface Management on BSD
On BSD firewalls, the script generated by Firewall Builder can create and remove bridge interfaces such as
"bridge0" and also add and remove regular Ethernet interfaces as bridge ports. This function is controlled
by the checkbox "Configure bridge interfaces" in the "Script" tab of the firewall object Firewall Settings
dialog as shown in Section 9.6.1. By default, bridge interface management is turned off.

As with IP addresses and vlans, the script manages bridges incrementally. It compares actual configuration
of the firewall with objects defined in the Firewall Builder GUI and then adds or removes bridge interfaces
and bridge ports. Running the same script multiple times does not make any unnecessary changes on the
firewall. If actual configuration matches objects created in the Firewall Builder GUI, the script does not
perform any actions and just exits.

For OpenBSD systems, the script uses utility brconfig to configure the bridge. It checks if the utility is
present on the firewall machine and aborts execution if it is not found. If this utility is installed in an
unusual place on your machine, you can configure the path to it in the "Host OS" settings dialog of the
firewall object.

For FreeBSD systems, the script uses utility ifconfig to configure the bridge. It checks if the utility is
present on the firewall machine and aborts execution if it is not found. If this utility is installed in an

Configuration of interfaces

254

unusual place on your machine, you can configure the path to it in the "Host OS" settings dialog of the
firewall object.

To illustrate bridge management on FreeBSD, consider firewall object "freebsd-test-bridge-1" shown on
Figure 9.32:

Figure 9.32. Example Configuration; Initial Firewall Objects

To build the bridge, I need to create the bridge interface "bridge0". This interface is just a regular child
object of the firewall object in the tree: to create it, select the firewall and right-click to open the context
menu, then select "New Interface". The new interface is created with the generic name "Interface"; rename
it to "bridge0".

Figure 9.33. Bridge Interface bridge0

To make bridge0 a bridge interface, open it in the editor by double clicking it in the tree and then click
"Advanced Interface Settings" button. This opens a dialog where you can change interface type and con-
figure some parameters. Set type to "Bridge" and turn STP on if you need it.

Figure 9.34. Configuring Bridge Interface Type

Now we need to add the interfaces that will be bridge ports of this bridge. Right-click the bridge0 interface
and select New Interface. This creates a child interface object below the bridge0 interface. Rename this
interface to match the physical interface on the server that will be a bridge port. In this example we will
use the em1 interface.

Configuration of interfaces

255

Firewall Builder will automatically detect that this interface is a bridge port since the parent interface type
is set to bridge.

Figure 9.35. Editor for the em1 Interface Shows It Is a Bridge Port

Add the second bridge port by repeating the process and adding another child interface to bridge0. In this
example, the second interface is em2.

Figure 9.36. Bridge interface with two bridge ports

Bridge interfaces can be optionally configured with an IP address. If the bridge interface is not going to
have an IP address assigned the bridge interface needs to be updated to be an unnumbered interface. Dou-
ble-click the bridge0 interface to open it for editing. Click the radio button to set the type to Unnumbered
interface.

Figure 9.37. Configuring Bridge Ports

Compiling and installing the generated script on a FreeBSD 8.1 firewall named free-bsd-1 results in the
following bridge0 interface configuration.

Configuration of interfaces

256

free-bsd-1# ifconfig bridge0
bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether 22:ae:66:38:73:c7
 id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:00:00:00:00:00 priority 32768 ifcost 0 port 0
 member: em3 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
 ifmaxaddr 0 port 4 priority 128 path cost 20000
 member: em2 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
 ifmaxaddr 0 port 3 priority 128 path cost 20000
free-bsd-1#

9.7. Bonding Interfaces
Support for bonding interfaces is currently available only for Linux firewalls. A generated iptables script
can incrementally update bonding interfaces:

• The generated script includes shell code to manage bonding interfaces if the checkbox "Configure bond-
ing interfaces" is turned on in the "Script" tab of the firewall object "advanced" settings dialog. By
default, it is turned off.

• The script uses ifenslave tool which should be present on the firewall. The script checks if it is available
and aborts if it cannot find it.

• The script creates new bonding interfaces with parameters configured in the GUI if the module 'bonding'
is not loaded. This is what happens if the Firewall Builder script runs after reboot.

if there are no bonding interfaces in fwbuilder configuration, the script removes the bonding module to
kill any bonding interfaces that might exist on the machine.

If you add a second bonding interface in Firewall Builder, the script checks if it exists on the machine.
It will not create it because to do so, it would have to remove the module, which kills other bonding
interfaces. If this second bonding interface exists, it will be configured with slaves and addresses. If it
does not exist, the script aborts. In this case you need to either (1) reload the module manually or (2) add
max_bonds=2 to /etc/modules.conf and reboot or (3) unload the module and run the Firewall Builder
script again (if module is not loaded, the script loads it with correct max_bonds parameter)

If a bonding interface exists on the machine but not in Firewall Builder configuration, the script removes
all slaves from it and brings it down. It cannot delete it because to do so it would need to remove the
module, which kills other bonding interfaces.

Note

There is a limitation in the current implementation in that all bonding interfaces will use the same
protocol parameters. This is because module loading with parameter "-obond1" that is supposed
to be the way to obtain more than one bonding interface and also the way to specify different
parameters for different interfaces causes kernel panic in my tests. (Tested with bonding module
v3.5.0 and kernel 2.6.29.4-167.fc11.i686.PAE on Fedora Core 11.) The only working way to
get two bonding interfaces I could find is to load the module with parameter max_bonds=2, but
this means all bonding interfaces work with the same protocol parameters. If bond interfaces are
configured with different parameters in fwbuilder, the compiler uses the first and issues a warning
for others.

To configure bonding interface, we start with an interface object with name "bond0". Create this interface
as usual, open it in the editor by double clicking it in the tree, rename it, and then and click "Advanced
Interface Settings" button. Set the type to "Bonding" in the drop-down list and set the other parameters:

Configuration of interfaces

257

Figure 9.38. Bonding Interface Settings

To add regular Ethernet interfaces as slaves to a bonding inetrface, copy and paste (or create) them so they
become child objects of a bonding interface. A bonding interface needs an IP address as any other regular
interface. Final configuration looks like shown in Figure 9.39:

Figure 9.39. Bonding Interface bond0 with Two Slaves

If you only want to be able to use the bonding interface in rules, then this is sufficient configuration. You
can go ahead and add rules and place object "bond0" in "Source", "Destination" or "Interface" column of
policy rules. If you want Firewall Builder to generate a script that creates and configures this interface,
then you need to enable support for this by turning the checkbox "Configure bonding interfaces" on in the
"Script" tab of the firewall object settings dialog:

Configuration of interfaces

258

Figure 9.40. Configuration of Bonding Interfaces Should Be Enabled in Firewall
Settings Dialog

Now compile the firewall object, copy the generated script to the firewall machine and run it there. If
the script is started using the command-line parameter "interfaces", it only configures interfaces and IP
addresses but does not load iptables rules. Here is how it looks:

root@linux-test-1:~# /etc/fw/linux-test-bond-1.fw interfaces
Add bonding interface slave: bond0 eth2
Add bonding interface slave: bond0 eth3
Adding ip address: bond0 10.1.1.1/24

Interface configuration after the script run looks like this:

Configuration of interfaces

259

root@linux-test-1:~# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:aa brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet6 fe80::20c:29ff:fe1e:dcaa/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:b4 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::20c:29ff:fe1e:dcb4/64 scope link
 valid_lft forever preferred_lft forever
4: eth2: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:be brd ff:ff:ff:ff:ff:ff
5: eth3: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond0 state UP qlen 1000
 link/ether 00:0c:29:1e:dc:be brd ff:ff:ff:ff:ff:ff
6: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 00:0c:29:1e:dc:be brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.1/24 scope global bond0
 inet6 fe80::20c:29ff:fe1e:dcbe/64 scope link
 valid_lft forever preferred_lft forever

root@linux-test-1:~# cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v3.3.0 (June 10, 2008)

Bonding Mode: IEEE 802.3ad Dynamic link aggregation
Transmit Hash Policy: layer2 (0)
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0

802.3ad info
LACP rate: slow
Active Aggregator Info:
 Aggregator ID: 1
 Number of ports: 1
 Actor Key: 9
 Partner Key: 1
 Partner Mac Address: 00:00:00:00:00:00

Slave Interface: eth2
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:0c:29:1e:dc:be
Aggregator ID: 1

Slave Interface: eth3
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:0c:29:1e:dc:c8
Aggregator ID: 2

Running the script a second time does nothing because interface bond0 already exists and its configuration
matches the one defined in Firewall Builder:

Configuration of interfaces

260

root@linux-test-1:~# /etc/fw/linux-test-bond-1.fw interfaces
root@linux-test-1:~#

Note

Unfortunately, the generated script cannot manage bonding interface parameters. If you change
a bonding policy in the GUI, recompile it, and run the script on the firewall, nothing will happen.
You need to either manually unload the module or reboot the machine. However, if you add or
remove Ethernet interfaces under the bonding interface, the script will update its configuration
accordingly without the need to unload the module or reboot the machine.

261

Chapter 10. Compiling and Installing a
Policy

10.1. Different ways to compile
There are several ways to compile and install a policy, summarized here. The actual results are described
in more detail in later sections of this chapter.

• Figure 10.1. Icons in the main toolbar

The hammer icon in the topmost toolbar (on the left) lets you compile, but not install, one or more of
the firewalls or clusters in the object file. The arrow-and-wall icon lets you both compile and install
firewalls.

• The main menu items Rules > Compile and Rules > Install menu selections also let you compile, or
compile and install, one or more firewalls or clusters.

• Figure 10.2. Icons in the toolbar specific to the currently opened firewall

The hammer icon in the policy (on the right) toolbar lets you compile, but not install, the firewall of
the current policy. The arrow-and-wall icon in the policy toolbar lets you both compile and install it.
Note that this compiles the firewall of the shown policy. Double-clicking a different firewall to bring
up that firewall's object editor does not change the policy shown, and does not change which firewall
will be compiled.

• The Compile and Install menu selections in the right-click context menu (Figure 10.3) let you do a
compile or compile-and-install on the firewall that you selected. You can ctrl-click or shift-click to
select more than one firewall or cluster.

• To compile a single rule, select it in the rule set, right-click it and select Compile. Or, select a rule, then
press X on the keyboard. This only compiles the single rule and shows the result. This function does
not produce a firewall script.

Compiling and Installing a Policy

262

Figure 10.3. Compile and install options in the context menu that appears when you
right-click on a firewall or cluster object in the t ree

10.2. Compiling single rule in the GUI
While you're developing your firewall policy, you can compile individual rules to confirm that they do
what you intend. To compile an individual rule, right-click anywhere in the rule to open context menu,
then select Compile. Or, highlight the rule and press "X".

Compiling and Installing a Policy

263

Figure 10.4. Compiling single rule

Figure 10.5. Generated iptables script for the rule #0 is shown in the GUI

10.3. Compiling firewall policies
Once you have a policy created, you need to compile it into a script that can run on your target device.
You then need to install it on that device.

Let's walk through compiling a iptables firewall. Below is the access policy of the firewall.

Compiling and Installing a Policy

264

Figure 10.6. A policy to compile

To compile it use main menu item Rules > Compile.

Alternatively, open the Policy, NAT or routing rules of the firewall you want to compile by double-clicking
in the tree, then click the "Compile" icon (the hammer) in the policy window.

To compile several firewalls, use Shift-left click or Ctrl-left click to select more than one firewall. Then,
right-click on one of them to bring up the context menu and select Compile.

Different ways to compile one or several firewall objects were described earlier in Section 10.1.

Figure 10.7. Select your firewall

Check the Compile checkbox next to the firewall you want to compile, and uncheck all the others.

Firewall Builder keeps track of the last time the firewall was compiled and also keeps track of any changes
since then. If the firewall has not changed since the last compile, that firewall is unchecked by default

Compiling and Installing a Policy

265

because no compile is needed. Any direct change done to the rules of the firewall, or a change to any object
used in rules, triggers the recompile. You can always force compile by checking the Compile next to the
object in the list or skip it by unchecking it.

In addition, you can see which firewalls and clusters have been modified since their last compile by looking
at the object tree. If a firewall has been compiled since it was last modified, it appears in normal font. If
it has not been compiled since its last modification, it appears in bold.

As you can see in this image, firewalls that need compilation are in bold and are checked by default in
the Compile dialog. F irewalls that have been compiled since their last change are in regular font and are
unchecked by default.

Figure 10.8. Uncompiled firewalls are in bold

To see the last time a firewall or cluster was compiled, double-click it to bring up its object editor.

Figure 10.9. Object Editor Dialog with last modify and compile times

Returning to Figure 10.7. Since we are just doing a compile, the only checkbox is the Compile checkbox.
If we were doing a compile and install in the same run, you would also see an Install checkbox.

Click Next.

A dialog appears that tracks the status of the compile. In this case, we have an error:

Compiling and Installing a Policy

266

Figure 10.10. Compile status messages

Errors appear in red, and warnings appear in blue. In this case, it turns out that one of our rules shadows
one of our other rules. For other types of problems, see Section 15.3.

Errors and warnings are clickable. Clicking an error takes you to the portion of the policy where the error
occurs.

We fix the problem, then compile again.

Figure 10.11. Successful compile

To see the created script, look in the same directory as your .fwb file. The file will be called
<firewallName>.fw. (If you changed your default directory in the Preferences, then the generated script
will be there instead.)

Compiling and Installing a Policy

267

10.4. Compiling cluster configuration with Fire-
wall Builder

Cluster compilation works very much like it does for individual firewalls. However, there are a few things
to keep in mind.

Clusters are represented by objects of type "Cluster" located in the object group "Clusters". To a generate
configuration for all cluster member firewalls and install it on each, you need to compile it just like you
would compile a regular standalone firewall object.

10.4.1. Compile a Cluster, Install a Firewall

In the compile dialog list there are two columns of checkboxes: "Compile" and "Install". When you compile
a cluster, the "Compile" checkboxes appear next to the cluster objects only while "Install" checkboxes
appear next to the member firewall objects only. This is because to compile, the policy compiler needs to
read the cluster object to get all the information about the cluster configuration, including the list of member
firewalls. However, when generated configuration is ready and needs to be installed on member firewalls,
the program needs to communicate with each member firewall separately. So the "Install" checkboxes are
next to the member firewalls in the list, letting you turn installation on and off on each member separately.

Figure 10.12. Compiling cluster object with two members

Tip

A PIX cluster is an exception to this rule. In a PIX cluster, you only need to update configuration
of the active unit in the failover pair. The active unit then pushes configuration to the second
unit in the pair automatically. Firewall Builder is aware of this and the "Install" checkbox is only
enabled next to the member firewall marked as "master" in the cluster configuration.

10.4.2. Mixed Object Files

The data file used for this example has a mix of cluster objects with corresponding member firewalls and
standalone firewall objects that do not belong to any cluster. The latter get both "Compile" and "Install"
checkboxes as visible in Figure 10.13.

Compiling and Installing a Policy

268

Figure 10.13. Compiling all cluster and firewall objects

10.4.3. Compile a single firewall within a cluster

You can try to compile a firewall object that is a member of a cluster by selecting it in the tree and using
the context menu. When you do this, the program treats the object as standalone firewall rather than a
cluster member and does not generate any cluster-related part of the configuration, such as policy rules for
the failover protocols, the configuration script for failover interfaces, and so on. This is because a firewall
object can actually be a member of several clusters, which is useful to test different cluster configurations
or for transitions. In some cases a firewall object by itself may be so generic that it can describe member
firewalls in different locations (if potential address collisions are not an issue or all addresses are dynamic).
For these reasons, the program does not try to guess whether given a firewall object might be a cluster
member and which cluster it is a member of and falls back to treating it as a simple standalone firewall
object. However, the program shows a warning to indicate this as shown in Figure 10.14. Here we selected
firewall object "linux-test-1" in the tree and then used context menu to initiate compilation, forgetting that
it is a member of two different cluster configurations:

Compiling and Installing a Policy

269

Figure 10.14. Compiling a member firewall as standalone firewall objects

10.5. Installing a Policy onto a Firewall
After a firewall configuration has been generated by one of the policy compilers and saved in a file on
disk in the format required by the target firewall, it needs to be transferred to the firewall machine and
activated. This function is performed by the component we call "Policy Installer", which is part of the
Firewall Builder GUI.

In the process of doing the installation, you will have to provide the password to your firewall. If you end
up doing the installation several times, such as while troubleshooting, you will have to enter your password
several times. Alternatively, you can select Enable password caching in the Installer tab of the Preferences
dialog. Then, your password will be cached for the duration of the Firewall Builder session. However, the
password will not be written to disk at any time. Figure 4.31 has more information.

The installer needs to be able to copy the generated firewall script to the firewall and then run it there.
In order to do so, it uses secure shell (ssh). The program does not include ssh code; it uses an external
ssh client. On Linux, BSD and Mac OS X it uses the standard ssh client ssh and secure shell file copy
program SCP that come with the system; on Windows it uses plink.exe and pscp.exe. The full directory
path to the ssh client program can be configured in the Preferences dialog (accessible via Edit/Preferences
menu). However if you are on Linux, *BSD or Mac and use the standard ssh client available via your
PATH environment variable, you do not need to change the default value there.

Installer works differently depending on the target platform. In the case of Linux and BSD-based firewalls,
it uses SCP to copy the generated configuration files to the firewall machine and then uses ssh to log in and
run the script. In the case of Cisco routers or ASA appliance (PIX), what it does depends on the version of
IOS or PIX configured in the Firewall object. For old versions that do not support scp, it logs in, switches to
enable and then configuration mode and executes configuration commands one by one in a manner similar
to expect scripts. It inspects the router's replies looking for errors and stops if it detects one. In the end, it
issues the command write mem to store the new configuration in memory, then logs out. Newer versions
of IOS and PIX support scp and fwbuilder installer takes advantage of this. In this case it copies generated
script to the router or firewall and then executes it using "copy file running-config" command. It does
not use "config replace" command because configuration created by fwbuilder is incomplete and should
be merged with running config rather than replace it. Section 10.6 and Section 10.7 have more details.

The built-in policy installer has been designed to work with a dedicated firewall machine. In other words,
the computer where you run Firewall Builder and the actual firewall are different machines. Nevertheless,

Compiling and Installing a Policy

270

it can be used when they are the same machine as well. The only difference is that in all commands below
you would use the name or address of the machine where you run Firewall Builder instead of the name
or address of the dedicated firewall. The SSH client will then connect back to the same machine where it
runs and everything will work exactly the same as if it was different computer.

10.5.1. Installation Overview

Create directory /etc/fw/ on your firewall.

Now let's install the script using Firewall Builder's "install" functionality. Open your object file, if it isn't
open already, then select Rules > Install.

Figure 10.15. Select Rules/Install

The following dialog appears:

Compiling and Installing a Policy

271

Figure 10.16. Select Compile and Install

As you can see, a list of all firewalls in the object file appear. Not all Compile checkboxes are checked by
default. This is because Firewall Builder keeps track of the last time the firewall was compiled and also
keeps track of any changes since then. If the firewall has not changed since the last compile, that firewall
is unchecked by default because no compile is needed.

You can see which firewalls have been modified since their last compile by looking at the object tree. If a
firewall has been compiled since it was last modified, it appears in normal font. If it has not been compiled
since its last modification, it appears in bold.

Make sure the Install checkbox is checked next to the firewall you want to install (and the Compile check-
box if you've made changes since th e last compile), then click Next. The following dialog appears:

Compiling and Installing a Policy

272

Figure 10.17. Firewall SSH and install parameters

Enter the root username and password for the device, and specify the IP address of the management in-
terface of the device.

Then click OK.

If everything goes well, the following dialog appears and reports success. (If not, it will report failure. The
log will tell you what went wrong. If the error is unclear, see Section 15.3.)

Figure 10.18. Installation status

Compiling and Installing a Policy

273

Log into the firewall to see the policy in place. For iptables, run sudo iptables -L.

10.5.2. How does installer decide what address to use to
connect to the firewall

Installer does not use the name of the firewall when it connects; it always uses the firewall's IP address.
Installer starts by scanning interfaces of the firewall object looking for one that is marked as "Management
interface" in the interface object dialog. Installer uses the address of this interface to connect. The Man-
agement interface checkbox looks this:

Figure 10.19.

If your firewall has multiple addresses and you want to use the one that is not assigned to its interface in
the fwbuilder object, then you can overwrite the address using the entry field in the "Installer" tab of the
"Advanced" firewall object settings dialog, like this:

Figure 10.20.

More about other input fields in this dialog below.

Finally, you can overwrite the address on a one-time basis just for a particular install session using the
entry field in the installer options dialog. This is the same dialog where you enter your password:

Compiling and Installing a Policy

274

Figure 10.21.

Note

This works for all supported firewall platforms: iptables on Linux, pf on OpenBSD and FreeBSD,
ipfw on FreeBSD and Mac OS X, ipfilter on FreeBSD, Cisco IOS access lists, Cisco ASA (PIX),
and so on. Regardless of the platform, the installer follows the rules described here to determine
what address it should use to connect to the firewall.

10.5.3. Configuring Installer on Windows

You can skip this section if you run Firewall Builder GUI on Linux, *BSD or Mac OS X.

Built-in policy installer in Firewall Builder GUI uses ssh client to connect to the firewall. While ssh client
is standard on all Linux and BSD systems, as well as Mac OS X, it does not come with Windows. In order
to be able to use Firewall Builder GUI to install policy on Windows, you need to download ssh client
PuTTY and configure fwbuilder to use it. Note: PuTTY is free software.

Note

Starting with version 4.0.2, Firewall Builder includes putty ssh client utilities plink.exe and
pscp.exe in Windows package. You do not need to do any additional configuration if you use
fwbuilder v4.0.2 on Windows and can skip this section. However if you already have putty on
your machine or want to use different ssh client, then follow instructions in this section to see
how you can configure fwbuilder to use it.

If you do not use PuTTY and do not have it on your machine, start with navigating to the web site http://
www.chiark.greenend.org.uk/~sgtatham/putty/ [http://www.chiark.greenend.org.uk/~sgtatham/putty/]

Download and install putty.exe, plink.exe and pscp.exe somewhere on your machine (say, in C:\PuTTY).

Installer does not use putty.exe, but it will be very useful for troubleshooting and for setting up sessions
and ssh keys.

In the Edit/Preferences dialog, in the Installer tab, use the Browse button to locate plink.exe. Click OK to
save preferences. If you installed it in C:\PuTTY, then you should end up with C:\PuTTY\plink.exe in this
entry field. Do the same to configure the path to pscp.exe.

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Compiling and Installing a Policy

275

Figure 10.22.

You may log in to the firewall using a regular user account or as root. See instructions below for an
explanation how to configure sudo if you use regular user accounts. This part of the configuration does
not depend on the OS on which you run Firewall Builder.

Before you try to use fwbuilder installer with plink.exe and pscp.exe, test it from the command line to
make sure you can log in to your firewall. If this is the first time you've tried to log into the firewall
machine using putty.exe, plink.exe or pscp.exe, then the program will discover a new host key, ask you if
it is correct and ask if you want to save it in cache. There are lots of resources on the Internet that explain
what this means and how you should verify key accuracy before you accept it. If the key is already known
to the program it will not ask you about it and will just proceed to the part where it asks you to enter a
password. Enter the password and press Enter to see if you can log in.

Here is the command (assuming you use account "fwadmin" to manage firewall "guardian"):

 C:\Users\vadim>c:\PuTTY\plink.exe -l fwadmin guardian

Figure 10.23.

Compiling and Installing a Policy

276

Note

The installer does not use the GUI ssh client putty.exe, it uses command line utilities that come
from the same author: plink.exe and pscp.exe. You can test SSH connectivity with putty.exe, but
do not enter path to it in the Installer tab of the Preferences dialog in Firewall Builder. It won't
work.

Section 15.4 offers troubleshooting tips for problems you may encounter trying to use policy installer.

10.5.4. Using putty sessions on Windows

putty allows you to store a destination host name or address, user name and bunch of other parameters in
a session so that they all can be called up at once. If you wish to use sessions, do the following:

• Configure putty as usual, create and test a session for the firewall, test it using putty outside of Firewall
Builder. When you use a session, the firewall host name and user name are stored in the session file.
Firewall Builder allows you to enter the session name in the entry field in the firewall settings dialog
where you would normally enter an alternative address of the firewall. A comment next to the entry
field reminds you about this. Just type the session name in that field, leave the user name field blank
and save the settings.

• Once you start the installer, do not enter your user name in the "User name" field on the first page of
installer wizard. You do, however, need to enter the login and enable passwords. Configure the rest of
installer options as usual. They do not change when you use putty sessions.

10.5.5. Configuring installer to use regular user account
to manage the firewall:

Before fwbuilder v3.0.4, the built-in installer could only use a regular account to activate a policy if this
account was configured on the firewall to use sudo without a password. Starting with v3.0.4, this is not
necessary anymore because the installer can recognize sudo password prompts and enter the password
when needed.

• Create an account on the firewall (say, "fwadmin"), create a group "fwadmin" and make this user a
member of this group. Most modern Linux systems automatically create group with the name the same
as the user account.

adduser fwadmin

• Create directory /etc/fw/ on the firewall, make it belong to group fwadmin, make it group writable.

mkdir /etc/fw
chgrp fwadmin /etc/fw
chmod g+w /etc/fw

• Configure sudo to permit user fwadmin to execute the firewall script and a couple of other commands
used by the fwbuilder policy installer. Run visudo on the firewall to edit file /etc/sudoers as follows:

Compiling and Installing a Policy

277

Defaults:%fwadmin !lecture , passwd_timeout=1 , timestamp_timeout=1
User alias specification
%fwadmin ALL = PASSWD: /etc/fw/<FWNAME>.fw , /usr/bin/pkill , /sbin/shutdown

Here <FWNAME> is the name of the firewall. Installer will log in to the firewall as user fwadmin, copy
the firewall script to file /etc/fw/<FWNAME>.fw and then use the following command to execute it:

ssh fwadmin@firewall sudo -S /etc/fw/<FWNAME>.fw

• Set up ssh access to the firewall. Make sure you can log in as user fwadmin using ssh from your man-
agement workstation:

$ ssh -l fwadmin <FWNAME>

You may use either password or public key authentication; the installer will work either way. Use
putty.exe or plink.exe to test ssh access if you are on Windows (see above for the explanation how to
do this).

• In the installer tab of the firewall settings dialog of the firewall object, put in your user name (here it
is "fwadmin"):

Figure 10.24.

• If you need to use an alternative name or IP address to communicate with the firewall, put it in the
corresponding field in the same dialog page.

• Make sure the entry field directory on the firewall where script should be installed is set to /etc/fw.
Firewall Builder is not going to create this directory, so you need to create it manually before you install
the firewall policy (see above).

• Leave "Policy install script" and "Command line options" fields blank.

10.5.6. Configuring installer if you use root account to
manage the firewall:

• Create directory /etc/fw/ on the firewall, make it belong to root, make it writable.

• Set up ssh access to the firewall. Make sure you can log in as root using ssh from your management
workstation:

Compiling and Installing a Policy

278

$ ssh -l root <firewall_name>

You may use either password or public key authentication; the installer will work either way.

• In the installer tab of the firewall settings dialog of the firewall object put "root" as the user name you
use to log in to the firewall.

• Make sure entry field directory on the firewall where script should be installed is set to /etc/fw

• Leave Policy install script and Command line options fields are blank

10.5.7. Configuring installer if you regularly switch
between Unix and Windows workstations using the
same .fwb file and want to m anage the firewall from
both

First of all, the .fwb file is portable and can be copied back and forth between Linux/BSD and windows
machines. Even comments and object names entered in a local language should be preserved since the
GUI uses UTF-8 internally.

Built-in installer relies on path settings for ssh and SCP in Edit/Preferences/SSH. Since preferences are
stored outside of the .fwb file, the installer should work just fine when .fwb file is copied from Unix to
Windows and back. Just configure the path to ssh program in preferences on each system using default
settings "ssh" on Linux and path to plink.exe on Windows and give it a try.

10.5.8. Always permit SSH access from the management
workstation to the firewall

One of the typical errors that even experienced administrators make sometimes is to deploy a firewall that
blocks ssh access to the firewall from the management workstation. You need your workstation to be able
to communicate with the firewall in order to be able to make changes to the policy, so you always need to
add a rule to permit ssh from the management workstation. Firewall Builder can simplify this and generate
this rule automatically if you put an IP address of your workstation in the entry field on the first page
of firewall settings dialog. Here is the screenshot that illustrates this setting for an iptables firewall. The
management workstation has an IP address 192.168.1.100

Compiling and Installing a Policy

279

Figure 10.25.

10.5.9. How to configure the installer to use an alternate
ssh port number

If the ssh daemon on your firewall is listening on an alternate port, then you need to configure the built-
in installer so that it will run SCP and ssh clients with command line parameters that would make them
connect to this port. This is done in the installer tab of the firewall object advanced settings dialog as shown
on the following screenshot (here we set the port to "2222"):

Compiling and Installing a Policy

280

Figure 10.26.

Note

On Unix, the command line option that specifies the port number is different for ssh and SCP. It
is lowercase -p for ssh and uppercase -P for SCP. If you use the putty tool plink.exe and pscp.exe
on Windows, the option to specify an alternate port number is -P (capital "P") for both.

You can use the same input fields in this dialog to add any other command line parameters for ssh and
SCP. For example, this is where you can configure parameters to make it use an alternate identity file
(private keys). This information is saved with a firewall object rather than globally because you may need
to use different parameters for different firewall machines, such as different key files or ports.

10.5.10. How to configure the installer to use ssh private
keys from a special file

You can use the same entry fields in this dialog to provide other additional command line parameters for
ssh and SCP, for example to use keys from a different identity file. Here is how it looks:

Figure 10.27.

Here we configure ssh and SCP to use an alternate port and an alternate identity file ~/.ssh/
fwadmin_identity. The command line parameter for the port is different for ssh and SCP, but the
parameter for the identity file is the same (-i) for both utilities.

On Windows, the simplest way (or maybe the only way) to use alternative keys is to use putty sessions.

10.5.11. Troubleshooting ssh access to the firewall
The built-in policy installer will not work if ssh access to the firewall is not working. Test it using this
command on Linux (assuming you user "fwadmin" to manage the firewall):

Compiling and Installing a Policy

281

ssh -l fwadmin firewall

If you use the root account to manage the firewall, the command becomes

ssh -l root firewall

On Windows use putty.exe or plink.exe to do this:

C:\Users\vadim>c:\PuTTY\plink.exe -l fwadmin firewall

C:\Users\vadim>c:\PuTTY\plink.exe -l root firewall

If you cannot log in using ssh at this point, verify that the ssh daemon is working on the firewall, that
the existing firewall policy does not block ssh access and that ssh daemon configuration in /etc/ssh/
sshd_config permits login for root (if you plan to use the root account to manage the policy).

You may get the following error in the installer output (the same error appears if you try to test using SCP
or pscp.exe from the command line):

SCP: warning: Executing SCP1 compatibility.
SCP: FATAL: Executing ssh1 in compatibility mode failed (Check that SCP1 is in your PATH).
Lost connection
SSH session terminated, exit status: 1

This error may happen when you run fwbuilder on any platform; it is not specific to putty/pscp.

This error means SCP or pscp.exe was able to connect to the firewall but encountered ssh protocol version
mismatch. ssh tried to switch back to ssh1 compatibility mode, but failed. Here is an explanation of the
problem: http://www.snailbook.com/faq/SCP-ossh-to-ssh2.auto.html. This really has nothing to do with
fwbuilder or even SCP/putty/pscp on the client side. This happens if you have two versions of ssh package
installed on the firewall. ssh daemon accepts connection from pscp with ssh protocol v2, starts SCP utility
(still on the firewall) but the SCP utility it gets is from the other package and is probably an older version
that does not support ssh2 protocol. To resolve this, try switching to sftp. Here is how to test this from the
command line. First, reproduce the error:

C:\Users\vadim>c:\PuTTY\pscp.exe test.txt root@firewall:

If this command works, then it should work from inside fwbuilder too. However if you get an error saying
SCP: FATAL: Executing ssh1 in compatibility mode failed , try to use sftp.

Note

For this to work, sftp should be enabled on the server side. There are many resources on the web
that explain how to do this, for example this article [http://www.linux.com/feature/62254]. See
also the man page for sshd_config and search for "Subsystem" in it.

http://www.snailbook.com/faq/SCP-ossh-to-ssh2.auto.html
http://www.linux.com/feature/62254
http://www.linux.com/feature/62254

Compiling and Installing a Policy

282

C:\Users\vadim>c:\PuTTY\pscp.exe -sftp test.txt root@firewall:

Note

Note that there is only one '-' in front of "sftp" here.

If this works, then you need to add "-sftp" to the list of additional command line parameters for SCP in
the "Installer" tab of the firewall object dialog as explained above.

Another common source of problems with SCP and pscp.exe is described in this SSH FAQ [http://
www.openssh.org/faq.html#2.9]. When you use SCP to transfer a file, it actually launches a login shell
on the server side. So if your shell initialization script (.profile, .bashrc, .cshrc, etc) produces any kind of
output, SCP gets confused and fails.

10.5.12. Running built-in installer to copy generated fire-
wall policy to the firewall machine and activate it there

Now that all preparations are complete, we can move on and actually try to install a newly generated
firewall policy. Select the firewall object in the object tree in Firewall Builder, right-click and use menu
item Install.

Figure 10.28.

On this page of the wizard the program shows the list of all firewall objects with checkboxes that let you
choose which ones should be recompiled and installed. Time stamps in the three columns show the time
when each firewall object was modified, compiled and installed the last time. You can turn checkboxes

http://www.openssh.org/faq.html#2.9
http://www.openssh.org/faq.html#2.9
http://www.openssh.org/faq.html#2.9

Compiling and Installing a Policy

283

on and off to make the program recompile and then install any number of firewall objects. It will first
run the compiler for all of those marked for compile, then it will run the installer for all those marked for
installation. Installer will ask for the user name and password, as well as other parameters, before running
the install process for each of the firewalls. We will return to this page of the wizard later when we discuss
batch install. After you click Next on this page, the program re-compiles the policy and opens the installer
dialog for the first firewall marked for installation.

Figure 10.29.

This screenshot shows how the installer options dialog looks for iptables, pf, ipfilter and ipfw firewalls.
See below for the demonstration of how it looks while installing on Cisco router or ASA (PIX) device.

Here the program already entered the user name fwadmin in the "User Name" field, but you can change
it for one installation session if you wish. Next you need to enter the password for this user. This is the
password of user fwadmin on the firewall machine. The address that will be used to communicate with
the firewall is also entered by the program automatically; it is taken from the firewall settings. You can
change it for one installation session as well.

Other installer parameters do the following:

• Quiet install: as the name implies, this checkbox suppresses all progress output of the installer.

• Verbose: this checkbox has the opposite action: it makes the installer print a lot of debugging informa-
tion, including ssh client debug output.

• Store a copy of fwb file on the firewall: if this checkbox is on, the installer will copy not only generated
firewall configuration files to the directory on the firewall machine that is configured in the "installer" tab
of the firewall object dialog, but also the original .fwb data file as well. Use of this option is discouraged
if you manage many firewalls from the same .fwb file because distributing the file that contains the
security policy of multiple firewalls to all of them is a bad idea.

After all parameters are set and the password entered, click OK to start installation.

If this is the first time your management machine is logging in to the firewall via ssh, it will find out that
ssh host key of the firewall is unknown to it and will present you with a dialog:

Compiling and Installing a Policy

284

Figure 10.30.

Here it says that it does not know host key of the firewall "crash". This is nothing more than a copy of the
warning message presented by the ssh client. You should verify the host key manually and if it matches,
click Yes. If you click No in the dialog, the installation process will be interrupted.

Note

Installer only recognizes the ssh client warning message about unknown public host keys. If you
rebuild your firewall machine, which means its host key changes, ssh will print a different warning
message that fwbuilder installer does not recognise. In this case, you will see this message in the
installer progress window, but installation process will get stuck. You need to use ssh client (ssh
on Unix or putty.exe on Windows) to update the host key before you can use fwbuilder policy
installer with this firewall again.

After this, installer copies files to the firewall and runs policy script there. You can monitor its progress
in the dialog as shown on the screenshot:

Compiling and Installing a Policy

285

Figure 10.31.

This is an example of a successful installation session. Installer records the status in the left side panel
of the dialog. If you use the installer to update several firewall machines in one session, their names
and corresponding status of the installation session for each will be shown in the panel on the left. You
can save the installer log to a file using Save log to file button. This can be useful for documentation or
troubleshooting.

If you marked multiple firewall objects for installation on the first page of the installer wizard (the one
with the list of firewalls), then the program will repeat the installation process for the next object from the
list when you click Next. The Next button will be enabled if there are more firewalls to install to.

Compiling and Installing a Policy

286

10.5.13. Running built-in installer to copy generated fire-
wall policy to Cisco router or ASA (PIX)

From the user's point of view the installer works the same when you manage Cisco router or ASA firewall,
with only few minor differences. First of all, the first screen of the installer, where you enter the password,
offers another input field for the enable password as well.

Note

You should be able to use an IPv6 address to communicate with the router.

Figure 10.32.

Here is a screenshot of installation session to a Cisco router. Note the output at the very top of the log
that shows how the installer detected a previously unknown RSA host key and accepted it after the user
clicked "Yes" in the pop-up dialog (not shown on the screenshot). It then logged into the router. You can
see the banner motd output from the router. After this, the installer switched to enable mode, set terminal
width and turned off terminal pagination using the terminal length 0 command and finally switched to the
configuration mode. It then started entering the generated configuration line by line.

Compiling and Installing a Policy

287

Figure 10.33.

The final part of the installation session looks like this:

Compiling and Installing a Policy

288

Figure 10.34.

This was a successful installation session, with no errors. Installer finished entering configuration lines
and issued the exit command to exit configuration mode, then the wr mem command to save configuration
to memory and finally exit again to log out.

10.5.14. Batch install

Firewall Builder can help you manage the configuration of multiple firewalls if they all use the same user
name and password for authentication. To update the policy on multiple firewalls in one operation, use the
batch mode of the built-in installer. When you start the installer by clicking "Install" button in the toolbar
or using main menu "Rules/Install", the program opens the first page of the built-in installer where it lists
all firewall objects.

Compiling and Installing a Policy

289

Figure 10.35.

Select the firewalls you want to compile and install using batch install. Click the Next button and the
firewalls will be compiled. At the bottom of the compiler dialog there is a checkbox for enabling batch
installation. By default this option is disabled.

Compiling and Installing a Policy

290

Figure 10.36.

When you click "Next", the program opens simplified version of the installation parameters dialog:

Figure 10.37.

This is the same dialog as when we tried to install to a single firewall, except the batch mode dialog does
not offer an input fields for the alternative address and some other parameters. You cannot enter alternative

Compiling and Installing a Policy

291

addresses in the install dialog while running it in batch mode because it will talk to multiple firewalls and
one alternative address is not going to be useful. Other than that, this dialog always shows an entry field
for the "enable" password which you need to fill only if some of the firewalls in the batch are Cisco routers
or ASA (PIX) devices, otherwise leave it blank. When you run installer in the batch mode, it asks to enter
parameters only once before the installation process begins. Afters that, it uses this data to connect to each
firewall that was marked for installation in the first page of the installer wizard in turn, log in, upload new
configuration and activate it there.

10.6. Installing generated configuration onto
Cisco routers

Firewall Builder 4.0 introduces the ability to install generated configuration using scp.

10.6.1. Installing configuration with scp

Built-in installer in Firewall Builder v4.0 can use command scp to copy IOS configuration to the router
using ssh and then command "copy file running-config" to activate it. This method is much faster than
running configuration line by line. The router should be configured with ssh v2 and scp server.

To enable scp transfer open the Firewall Settings for the firewall, select the Installer tab, and enable the
checkbox for "Copy generated configuration file to the router using scp". Since this option is configured
separately for each firewall object, you can have a mix of installation methods if some routers do not
support scp.

For instructions how to configure scp on IOS see Secure Copy [http://www.cisco.com/en/US/docs/
ios/12_2t/12_2t2/feature/guide/ftscp.html]. You need to do the following:

• Create RSA keys using the following commands:

• enable ssh v2 using command "ip ssh version 2"

If you get an error message "Please create RSA keys (of atleast 768 bits size) to enable SSH v2"
after this command, you probably need to configure ssh server to read the key you have generated by
name using command ip ssh rsa keypair-name key_name as shown in the example below.

• enable scp server using command "ip scp server enable".

• User account used to copy the policy should have privilege 15: "username vadim privilege 15 pass-
word 7 XXXXXXXXXXX".

• Set up authentication using "aaa new-model" command.

The whole sequence should look like this:

http://www.cisco.com/en/US/docs/ios/12_2t/12_2t2/feature/guide/ftscp.html
http://www.cisco.com/en/US/docs/ios/12_2t/12_2t2/feature/guide/ftscp.html
http://www.cisco.com/en/US/docs/ios/12_2t/12_2t2/feature/guide/ftscp.html

Compiling and Installing a Policy

292

router(config)#hostname router_host_name
router(config)#ip domain-name domain.com
router(config)#crypto key generate rsa
The name for the keys will be: router_host_name.domain.com
Choose the size of the key modulus in the range of 360 to 2048 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
 a few minutes.

How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]

router(config)#ip ssh version 2
Please create RSA keys (of atleast 768 bits size) to enable SSH v2.
router(config)#ip ssh rsa keypair-name router_host_name.domain.com
*May 2 12:09:20.155: %SSH-5-ENABLED: SSH 2.0 has been enabled
router(config)#ip scp server enable
router(config)#
router(config)#aaa new-model
router(config)#aaa authentication login default local
router(config)#aaa authorization exec default local
router(config)#username tiger privilege 15 password 0 enter_password_here

To generate the key and store it on specific device, use command:

crypto key generate rsa general-keys modulus 1024 storage nvram:

To troubleshoot when scp is not working:

• Test using command line scp tool rather than fwbuilder installer. Use "scp" on Linux and Mac OS X
and "pscp.exe" on Windows like this: "scp file.fw router:nvram:file.fw"

• check that ssh and scp are enabled on the router (see commands above)

• check that user account has privilege 15

• Use command "debug ip ssh" on the router to turn debugging on. Diagnostic messages that it prints to
the console and to log may help you identify the problem

Note

Installer does not use command "config replace" because configuration created by fwbuilder is
incomplete and should be merged with running config rather than replace it.

10.7. Installing generated configuration onto
Cisco ASA (PIX) firewalls

Built-in installer can use command scp to copy generated configuration to the firewall and then command
"copy file running-config" to activate it. This method is much faster than running configuration line by
line. The firewall should be configured with ssh v2 and scp server.

To use this method, turn on checkbox in the tab "Installer" of the "advanced settings" dialog of the PIX
firewall. Since this option is configured separately for each firewall object, you can have a mix of instal-
lation methods if some firewalls do not support scp.

Compiling and Installing a Policy

293

To configure scp on the PIX firewall you need to do the following:

• Create RSA keys

• enable ssh v2 using command "ssh version 2" in configuration mode

• enable scp using command "ssh scopy enable" in configuration mode

• make sure user account used to copy configuration has "privilege 15": "username fwadmin password
XXXXXXX privilege 15"

To troubleshoot when scp is not working:

• Test using command line scp tool rather than fwbuilder installer. Use "scp" on Linux and Mac OS X
and "pscp.exe" on Windows like this: "scp file.fw firewall:flash:file.fw"

• check that ssh and scopy are enabled on the firewall

• check that user account has privilege 15

• Use command "debug ssh 10" on PIX to turn debugging on. Diagnostic messages that it prints to the
console and to log may help you identify the problem

Note that when fwbuilder uses command "copy file.fw running-config" to activate uploaded policy, the
firewall does not print it. If there are errors, they are printed but the lines they refer to are not printed. Some
configuration lines trigger lines because they try to configure things that are already configured, such as
some parameters of interfaces, global pools etc.

Generated PIX configuration will include commands that enable ssh v2 and enable scopy if this option is
turned on to make sure they stay enabled after configuration is reloaded from the file.

294

Chapter 11. Manage your firewall
remotely

This chapter explains how to set up a firewall on a small dedicated machine and use a separate workstations
to manage it.

The best way to utilize the flexibility of Firewall Builder and to minimize the risk to your network is to
run Firewall Builder on a dedicated management workstation. This workstation will have the near-full
installation of Linux or FreeBSD, complete with X11 and Gnome or KDE. Alternatively, it can be a Mac
or Windows PC.

The reason we do not recommend running X11 and GUI environment on the firewall is actually rather
simple. It is well known that complex programs are more prone to errors than simple and short ones. X11
and GUI environments are very complex programs, rivaling or exceeding the Linux kernel in size. Granted,
you may be safe if you run these on the firewall provided you install all the latest patches and keep your
software up-to-date. This, however, means a lot of effort and time spent on maintaining software that is not
essential to the operation of the firewall and is being used only once in a while. You may add protection
using firewall rules to block all access to the firewall itself from outside (a very good idea regardless
whether you run X11 on it), but then you need to carefully watch your policy to make sure you don't
drop these rules accidentally. The rules may get more complex if you ever need to manage your firewall
remotely, making verification difficult. All this adds up to the risk factor, so it is just a lot simpler to not
have X11 and GUI on the firewall at all.

In other words, run X11 and GUI environment on the firewall machine only when you have a definite
reason to do so, and keep an open eye on it.

We will look at configuring the dedicated firewall machine and then at configuring the management work-
station.

11.1. Dedicated Firewall machine
The choice of the hardware for the firewall depends on how much bandwidth is needed by the network it
protects. Our experience indicates that an old Pentium machine is sufficient for a group of 2-5 people doing
regular web surfing, sending and receiving email and doing some other not-very-demanding tasks. Small
firewall appliances made by Linksys or DLink demonstrate good performance as well. These appliances
do not allow ssh access by default, so fwbuilder won't be able to upload generated firewall configuration,
however their firmware can be replaced with DD-WRT [http://www.dd-wrt.com/site/index] or OpenWRT
[http://openwrt.org/] which enabled ssh and many other powerful features. Firewall Builder 4.0 comes with
direct support for OpenWRT and can generate a drop-in replacement for its standard firewall configuration
(just choose host OS "OpenWRT" in the firewall object).

We have ran firewalls like that at various times using Linux/iptables, FreeBSD/ipfilter and OpenBSD/pf
combinations and can't say that any particular platform has better performance. They all just work. A
firewall like one of these won't slow down file transfer on a DSL or a cable network, easily supporting
download speeds of 1.5 - 2 Mbit/sec. Since hardware like this is very obsolete and can be had for almost
nothing, we never saw the need to investigate which OS and firewall performs better on a slower CPU.
People have had good results using old notebooks as their firewalls, too. The advantage of the notebook
is that is has a monitor which makes troubleshooting easier in case you make a mistake in the policy rules
and block your own access to the firewall over the network.

For a larger installation (more people or long policy) a faster CPU is needed.

http://www.dd-wrt.com/site/index
http://www.dd-wrt.com/site/index
http://openwrt.org/
http://openwrt.org/

Manage your firewall remotely

295

The OS installed on the firewall machine should be minimal. Basically, all you need is the kernel, basic
tools usually found in /bin, and ssh. This is true regardless of what OS you choose, so just follow installation
instructions appropriate for your OS. Do not install development tools, X11, editors, graphics software
and so on and you'll be fine. Make sure you get ssh, though, and in some cases you may need Perl.

Once you install the firewall machine, check if the ssh daemon is running. It usually is, but some OS
have different installation options and if you choose "workstation" install, they may not start ssh daemon
automatically. Use ps -ax | grep sshd to check if the daemon is running, and if it is not, activate it.

11.2. Using Diskless Firewall Configuration
Several projects came up with a decent distributions intended for a small diskless router/firewall. We have
experience with floppyfw [http://www.zelow.no/floppyfw/] and Devil Linux [http://www.devil-linux.org],
consequently Firewall Builder has policy install scripts for these. The advantage of using either one of
these is that you won't have to install OS and software on the firewall machine; you just pop in a floppy or
a CD-ROM and boot from it. This is as close as it comes to the firewall appliance, yet you get a modern
Linux kernel and iptables with both. The whole OS is stored on the write-protected media and can be easily
replaced or upgraded simply by changing the disk. Floppy FW comes on a single floppy. (These guys
managed to pack a kernel, a busybox application and bunch of other programs on a single compressed ram
disk.) You don't get ssh with floppyfw though. The firewall configuration is located in a text file that can
be edited off-line and then written to the floppy. Firewall Builder's install script also writes the firewall
policy to this floppy when you call main menu item Rules/Install. Once configuration is written to the
floppy, you insert it in the firewall and reboot. That's it.

Devil Linux comes on a CD-ROM and obviously has lot more stuff on it. They also keep configuration on
a floppy disk. Firewall Builder's install script writes firewall policy to this floppy, which you then need to
insert in the firewall. See detailed documentation on using Devil Linux [http://www.devil-linux.org/home/
index.php] on their web site.

11.3. The Management Workstation
The management workstation runs fwbuilder, so it needs X11 and all other libraries fwbuilder depends
upon. Follow Installation instructions in Chapter 2 to install fwbuilder on the machine. Start fwbuilder by
typing "fwbuilder" at a shell prompt to test it.

Once you get the Firewall Builder GUI up and running on the management workstation, you need to build a
firewall policy and, eventually, compile it and install on the firewall. Other sections of this Guide describe
all steps of this process. Configuration of the built-in policy installer and different ways to use it to install
and activate generated policy on the dedicated firewall can be found in Chapter 10.

http://www.zelow.no/floppyfw/
http://www.zelow.no/floppyfw/
http://www.devil-linux.org
http://www.devil-linux.org
http://www.devil-linux.org/home/index.php
http://www.devil-linux.org/home/index.php
http://www.devil-linux.org/home/index.php

296

Chapter 12. Integration with OS
Running on the Firewall Machine

Firewall Builder can generate a firewall script in the format tailored for a specific OS or for distributions
running on the firewall. This helps integrate generated firewall configuration with startup scripts and other
parts of the system-wide configuration of the OS running on the firewall. As of v4.0, Firewall Builder
comes with this support for OpenWRT, DD-WRT, and Sveasoft firmwares for small firewall appliances
(Linksys, DLink, and others), it also has experimental integration with IPCOP and derivatives. Integration
with Secunet Wall firewall is provided and supported by Security Networks AG, Germany.

A script generated by Firewall Builder can have different format or even add or skip certain parts, depend-
ing on the chosen target firewall OS. You can switch from one OS to another using "Host OS" setting in
the firewall object dialog.

12.1. Generic Linux OS
A script generated by Firewall Builder for a generic Linux firewall has a standard structure per LSB ("Lin-
ux Standard Base Core Specification 3.1") [http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-gener-
ic/LSB-Core-generic.html#INISCRPTACT]. The script supports command-line arguments "start", "stop",
"status", "reload". In addition to these, it also understands arguments "interfaces" and "test_interfaces".
The script can be placed in the /etc/init.d/ directory among other initialization scripts; however, at this time
this is not the default. The script does not have standard "INIT INFO" header for the chkconfig (or similar)
utility. Mostly, this is because different Linux distributions use slightly different format of this header and
different utilities to manage start-up scripts and Firewall Builder does not yet allow the user to specify
which Linux distribution is running on the firewall machine. This support may improve in the future.

See Section 12.7 for the recommended methods of making the firewall script installed by Firewall Builder
run at the system start-up.

The generated script is assembled from parts defined in configlets located in /usr/share/fw-
builder-4.0.0/configlets/linux24/script_skeleton. You can modify it following instructions in Chapter 13.

12.2. OpenWRT
To use Firewall Builder with OpenWRT [http://openwrt.org/] you need to install the following packages
on the firewall, using the "ipkg install package.ipk" command:

• ip

• ip6tables (if you need IPv6)

• iptables-mod-extra

• iptables-utils

• kmod-ipt-extra

Note

The firewall script generated by Firewall Builder for OpenWRT has a format that allows it to
be placed directly in the /etc/init.d/ directory among other OpenWRT startup scripts. Its default

http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.html#INISCRPTACT
http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.html#INISCRPTACT
http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.html#INISCRPTACT
http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic.html#INISCRPTACT
http://openwrt.org/
http://openwrt.org/

Integration with OS Run-
ning on the Firewall Machine

297

name, however, is different from the name of the OpenWRT standard firewall script (which is
"firewall"). The script generated by Firewall Builder has name "firewall.fw" by default so it does
not overwrite the standard script "firewall". This is done as a precaution, since support for Open-
WRT was only added in Firewall Builder v4.0 and we haven't accumulated enough experience
with it. If you feel it works well and can be used as a replacement for the standard firewall script,
just change the name of the script to "firewall" in the "Compiler" tab of the firewall settings dia-
log. Instructions in this section explain how to activate the script generated by Firewall Builder,
assuming it has the default name "firewall.fw". This way, the standard script is still going to be
present on the firewall and you can always switch back to it.

Firewall Builder uses name "fwbuilder.fw" for the generated script for OpenWRT and places it in directory
"/etc/init.d/" on the firewall. To make the firewall run it during boot sequence, install the script using the
built-in policy installer or copy it to this directory manually, then run the command

/etc/init.d/fwbuilder.fw enable

and disable the standard firewall script:

/etc/init.d/firewall disable

To activate the firewall and load policy generated by Firewall Builder, use command

/etc/init.d/fwbuilder.fw start

To stop the firewall and block all traffic use the command

/etc/init.d/fwbuilder.fw stop

An option in the "Compiler" tab of the firewall object in Firewall Builder GUI allows you to make the
firewall block all traffic when stopped but still permit ssh connections from preconfigured address of
the management machine. This method works both on stable Kamikaze (v7.06) and the latest OpenWRT
(v8.09 at the time of Firewall Builder v4.0 release).

In test mode Firewall Builder copies generated firewall script to directory /tmp on the firewall.

12.3. DD-WRT
To use Firewall Builder with DD-WRT [http://www.dd-wrt.com/], configure the firewall object with host
OS "DD-WRT (nvram)" or "DD-WRT (jffs)". These two settings define the activation method used by the
built-in policy installer, it can either store generated script in nvram or in jffs (journaling flash file system).

12.3.1. DD-WRT (nvram)
In this mode generated script is shorter and does not support command-line arguments "start", "stop",
"status". The script does not try to load iptables modules on the firewall but configures inetrface addresses,
vlans, bridge ports and bonding interfaces. When you set host OS of the firewall object to "DD-WRT

http://www.dd-wrt.com/
http://www.dd-wrt.com/

Integration with OS Run-
ning on the Firewall Machine

298

(nvram)", built-in policy installer saves the script in nvram variable "fwb" and configures nvram variable
"rc_firewall" to run this script.

Generated script is assembled from parts defined in configlets located in directory /usr/share/fw-
builder-4.0.0/configlets/dd-wrt-nvram/. You can modify it following instructions in Chapter 13.

12.3.2. DD-WRT (jffs)
First of all, activate JFFS/JFFS2 (Journaling Flash File System) on the firewall. Instructions are provided
in the DD-WRT wiki [http://www.dd-wrt.com/wiki/index.php/Journalling_Flash_File_System]. Once jffs
is mounted read-write, create directory "/jffs/firewall" where fwbuilder will store generated script. This is
explained in this article in DD-WRT wiki [http://www.dd-wrt.com/wiki/index.php/Firewall_Builder].

When the firewall is configured with host OS "DD-WRT (jffs)", built-in policy installer copies generated
script to the file "/jffs/firewall/firewall.fs" on the firewall and configures nvram variable "rc_firewall" to
call this script. In the older versions of Firewall Builder you had to configure the program manually to
do these steps per in DD-WRT wiki [http://www.dd-wrt.com/wiki/index.php/Firewall_Builder]. Firewall
Builder 4.0 implements this configuration out of the box.

The generated script is assembled from parts defined in configlets located in directory /usr/share/fw-
builder-4.0.0/configlets/dd-wrt-jffs/. You can modify it following instructions in Chapter 13.

Note

Recent builds of DD-WRT (tested with v24 and v24SP1) seem to disable JFFS for some reason. If
you plan to use the jffs method of installing firewall script, check if the version you run supports it.

12.4. Sveasoft
Another firmware for the firewall apliances such as Linksys, DLink, and others supported by Firewall
Builder is Sveasoft [http://sveasoft.com/].

The difference here is both in the generated script format and in commands that built-in policy installer
executes on the firewall. The reason for these differences is that Sveasoft stores firewall configuration in
NVRAM, which has limited capacity.

Script generated for the Sveasoft firmware is more compact and is missing certain sections. For example,
since the kernel has all modules compiled in, the script is not trying to load modules. The script also acti-
vates the policy when called without command line parameters. Script structure is defined in the configlet /
usr/share/fwbuilder-4.0.0/configlets/sveasoft/script_skeleton. You can modify it following instructions in
Chapter 13.

Activation process on Sveasfot is more complex because installer can compress firewall script before stor-
ing it in NVRAM. Installation commands are in the configlet /usr/share/fwbuilder-4.0.0/configlets/svea-
soft/installer_commands_root.

12.5. IPCOP
Firewall Builder v4.0 comes with experimental integration with IPCOP firewalls. To turn this support on,
choose "iptables" as the platform and "IPCOP firewall appliance" as the host OS. The generated script
is supposed to be installed on the firewall as /etc/rc.d/rc.firewall.local and restarted by issuing the /etc/
rc.d/rc.firewall restart command. Firewall Builder's built-in policy installer installs it using this name
and runs the restart command to activate it. To avoid conflicts with IPCOP itself, Firewall Builder does

http://www.dd-wrt.com/wiki/index.php/Journalling_Flash_File_System
http://www.dd-wrt.com/wiki/index.php/Journalling_Flash_File_System
http://www.dd-wrt.com/wiki/index.php/Firewall_Builder
http://www.dd-wrt.com/wiki/index.php/Firewall_Builder
http://www.dd-wrt.com/wiki/index.php/Firewall_Builder
http://www.dd-wrt.com/wiki/index.php/Firewall_Builder
http://sveasoft.com/
http://sveasoft.com/

Integration with OS Run-
ning on the Firewall Machine

299

not manage the interfaces of the IPCOP firewall. Instead, use Firewall Builder only to generate the iptables
rules. Firewall Builder comes with some template objects for IPCOP firewalls; you can use these objects
when you create a new firewall object if you choose to create it from a template.

The iptables script for IPCOP is built using configlets in the /usr/share/fwbuilder-4.0.0/configlets/ipcop
directory. Commands used by the built-in policy installer come from configlets in the same directory.

12.6. OpenBSD and FreeBSD
Firewall Builder supports configuring pf, ipfilter, and ipfw rules for OpenBSD and FreeBSD systems.

12.6.1. PF
To create a new pf firewall, select the PF platform option on the first page of the New Firewall wizard.
You must also choose whether the firewall will be running on OpenBSD (the default) or FreeBSD.

Figure 12.1. New Firewall Wizard - PF Firewall

12.6.1.1. FreeBSD

Starting in Firewall Builder V4.2 there are two supported modes for generating pf firewall configurations
on FreeBSD systems.

1. Standard Mode - in this case, Firewall Builder generates both a pf.conf-style configuration file and
a .fw activation script.

2. rc.conf Mode - in this case, Firewall Builder generates both a pf.conf-style configuration file and an
rc.conf.local style configuration file.

Note

By default, file names use the name of the firewall object as the base of the filename. For example,
a firewall named "guardian" would generate files called guardian.conf (pf.conf-style commands)
and guardian.fw (bash shell activation script OR rc.conf.local-style settings).

You can override the default file names by changing the settings in the Firewall Settings on the
Compiler tab.

Figure 12.2. Firewall Settings - Changing File Names

Integration with OS Run-
ning on the Firewall Machine

300

Standard Mode

In this mode, Firewall Builder generates a firewall.conf file that uses the same style as pf.conf. By default,
Firewall Builder will install this file in /etc. You can update the installation location by clicking the Installer
tab in the Firewall Settings. The first entry is directory location on the firewall.

Firewall Builder also generates a firewall.fw file when it is configured in Standard mode. This is a bash
shell script file that sets interface IP addresses, create static routes, etc., if these options have been selected
in Firewall Settings.

This is the default mode and you don't need to change any settings to use Firewall Builder in this mode
with your PF firewall running on FreeBSD.

rc.conf Mode

To switch from Standard Mode to rc.conf mode open the Firewall Settings window. Click onthe tab labeled
Script. If your host OS is set to FreeBSD you will see two radio buttons at the top of the window to set the
initialization mode. Select the radio button next to the "file in rc.conf format" option.

Figure 12.3. Firewall Settings - Changing Mode

In this mode, the generated firewall.conf file is the same as the firewall.conf file that is generated in the
Standard Mode.

Instead of a bash shell script in this mode the initialization file, firewall.fw, will be in rc.conf settings
format as shown below.

Figure 12.4. Example Generated firewall.fw in rc.conf Format

Integration with OS Run-
ning on the Firewall Machine

301

12.6.1.2. OpenBSD

Firewall Builder only supports Standard Mode, which is where a bash script file is generated to configure
system parameters such as interface IP addresses, for OpenBSD systems. The rc.conf option format is
disabled for OpenBSD systems as shown below.

Figure 12.5. rc.conf Format Option Disabled for OpenBSD

12.6.2. ipfilter
For ipfilter, Firewall Builder generates three files: the firewall-ipf.conf file with filter rules, fire-
wall-nat.conf file with NAT rules, and firewall.fw with a policy activation script.

12.6.3. ipfw
For ipfw, a single script, firewall.fw, is generated. This script does all the prepararory work and then loads
ipfw rules.

By default, generated scripts are installed in the /etc/fw/ directory on the firewall and the work of making
sure they are executed on system start-up is left for the administrator. See Section 12.7 for some recom-
mended ways to do this.

12.7. How to make your firewall load your fire-
wall policy on reboot
12.7.1. Making the Firewall Load the Firewall Policy After
Reboot: iptables

The procedure for ensuring that the firewall loads the policy after reboot depends on what Linux distrib-
ution your firewall is based on. Firewall Builder generates the policy in a form of a shell script for the
firewall based on Linux and iptables. To activate the policy at boot time, you must execute this script at
boot time one way or another.

The standard method is to locate the generated script in the /etc or /etc/firewall directory and add a line at
the bottom of the /etc/rc.d/rc.local script (for Mandrake and RedHat systems), the /etc/rc.local script (for
Debian, Ubuntu, and derivative systems) or the /etc/init.d/boot.local script (for SuSE systems) as shown
below:

/etc/firewall/firewall.fw

When this is done, the firewall script runs when machine executes boot-time scripts. The name of the file
is the same as the name of the firewall object in Firewall Builder GUI, with extension ".fw". So, if firewall
object name is guardian, then fwbuilder puts generated policy in the file guardian.fw.

Integration with OS Run-
ning on the Firewall Machine

302

Since the firewall policy generated by Firewall Builder is installed by running this script at a boot time,
any other firewall startup script that might be supplied by the vendor of your Linux distribution should be
disabled. On Mandrake and RedHat systems, this can be done using the following command:

chkconfig --level 2345 iptables off

On SuSE use command

chkconfig -e

and change state of services as follows:

SuSEfirewall2_final off
SuSEfirewall2_init off
SuSEfirewall2_setup off

(There must be better way to turn firewall off on SuSE, but we do not know it.)

Another method to get firewall policy automatically installed at boot time uses scripts supplied by Man-
drake or RedHat. You still need to copy the generated script to the firewall machine and execute it there.
(This can be done using installer scripts fwb_install or fwbinstaller.) Once the policy has been tested and
works as expected, you just execute service iptables save to save the policy. Now the policy will be ac-
tivated at a boot time if the iptables service is active. You can make it active on Mandrake and RedHat
using the following command:

chkconfig --level 2345 iptables on

Note

The script generated by Firewall Builder does more than just set iptables rules; it also adds virtual
IP addresses to the interfaces of the firewall and configures kernel parameters. It can get real IP
addresses of interfaces with dynamic addresses and checks if interfaces are present and "up" at
the time when firewall policy is applied. The standard scripts iptables-save and iptables-restore
only manage iptables rules; other tasks performed by the script generated by Firewall Builder
will not be done upon reboot if you use this method.

12.7.1.1. Restarting the Firewall Script when an Interface Address
Changes

The Firewall policy script generated by Firewall Builder for iptables firewalls needs to be restarted every
time the IP address of a dynamic interface changes. This section explains why is it so and how this can
be done.

The iptables firewall policy script generated by Firewall Builder determines the IP addresses of all dynamic
interfaces and assigns them to variables, which it then uses in the policy rules. This helps to build rules
that require knowing the address of the interface correctly, such as anti-spoofing rules. On the other hand,
if interface's address changes after the policy has been loaded and activated, the firewall script needs to
be restarted.

Integration with OS Run-
ning on the Firewall Machine

303

The firewall can be restarted from one of the scripts that get called by PPP or DHCP daemons whenever the
connection is established or a new address lease is obtained. For example, the DHCP daemon distributed
with all major Linux distributions calls a script named dhclient-exit-hooks when a new DHCP
lease is obtained. To restart the Firewall Builder-generated firewall script after a new DHCP lease is ob-
tained, add the following lines to the dhcclient-exit-hooks.

#!/bin/sh
/etc/firewall/firewall.fw

Note

The location of the dhcclient-exit-hooks can vary, but it is usually found in either /etc
or /etc/dhcp3, depending on your system. You may have to create the file if it does not exist
already. Check for the proper file location by running the man dhclient-script command.

See man page dhclient-script(8) for a detailed explanation.

Note

On SUSE systems, you should use YAST to configure this. Start the YAST control center, go to
"System", then "Editor for /etc/sysconfig files" in the right panel, and when the editor appears,
choose "Network/DHCP/DHCP client" in the tree and edit "DHCLIENT_SCRIPT_EXE".

The PPP daemon calls the /etc/ppp/ip-up script when the connection is established and the IP
address obtained. This script can be used to restart the firewall as well. Just as with dhclient-ex-
it-hooks, just add a call to the /etc/firewall/firewall.fw script at the bottom of the /etc/
ppp/ip-up file.

Note

The "/etc/firewall/firewall.fw" file should be replaced everywhere with the real
name of the firewall script. Firewall Builder stores firewall commands in the file with the name
the same as the name of the firewall object, with an extension ".fw".

Note

Currently, Firewall Builder requires restart of the firewall script only on iptables firewalls. Fire-
walls based on OpenBSD pf do not require a restart, because pf can dynamically load IP address
of the interface when it changes. Currently, on ipfilter and ipfw firewalls address of the dynamic
interface has to be entered in the GUI, or it cannot be used in the rule. This limitation will be
removed in the future versions of the product.

12.7.2. Making the Firewall Load the Firewall Policy After
Reboot: pf

For OpenBSD pf, Firewall Builder puts the firewall policy in the file firewall.conf and the activation script
in firewall.fw

To activate the policy, copy both files to the directory /etc on the firewall machine using fwbinstaller.
Fwbinstaller executes the activation script to install the policy immediately. The activation script not only
loads PF rules, it also configures aliased IP addresses on the firewall's interfaces, which is important if you
use multiple addresses for NAT and want Firewall Builder to configure them for you. It also sets kernel

Integration with OS Run-
ning on the Firewall Machine

304

parameters defined in the "Network" tab of the firewall dialog (such as IP forwarding etc.) In order to
make the firewall activate it at a boot time, call the firewall script from the file /etc/rc.local, as follows:

/etc/firewall.fw

If you do not want to use the activation script provided by Firewall Builder, you can use standard mecha-
nisms supplied by OpenBSD. Edit the file /etc/rc.conf as follows:

pf=YES # Packet filter / NAT
pf_rules=/etc/firewall.conf # Packet filter rules file
pflogd_flags= # add more flags, i.e. "-s 256"

12.7.3. Making the Firewall Load the Firewall Policy After
Reboot: ipfw

For ipfw, Firewall Builder generates a policy in the form of a shell script (as for iptables).

To install the policy, copy the generated script to the /usr/local/etc/ directory using ssh and then execute it.
To make the firewall run this script at boot time make the following modifications to the /etc/rc.conf file:

firewall_enable="YES"
Set to YES to enable firewall functionality
firewall_script="/usr/local/etc/firewall.fw"
Which script to run to set up the firewall

12.7.4. Making the Firewall Load the Firewall Policy After
Reboot: ipfilter

On FreeBSD, Firewall Builder generates the firewall policy in three files. Assuming the firewall object's
name is firewall, these files are firewall-ipf.conf, firewall-nat.conf, firewall.fw. The first two files contain
the configuration for ipfilter, while the last one is a shell script that activates it. This script can also con-
figure aliased IP addresses on the firewall's interfaces, which is important if you use multiple addresses
for NAT and want Firewall Builder to configure them for you.

The simplest way to activate the generated policy and to make sure it is activated at boot time is to put all
three files in /usr/local/etc/ directory and modify script /etc/rc.conf by adding the following lines:

firewall_enable="YES"
Set to YES to enable firewall functionality
firewall_script="/usr/local/etc/firewall.fw"
Which script to run to set up the firewall

You can use the script fwbinstaller to copy all three generated files from the firewall management work-
station to the firewall machine.

See also the excellent mini-HOWTO: Deploy fwbuilder-generated policy to remote FreeBSD-and-ipfil-
ter-based firewall [http://nil59.pisem.net/fwbuilder-relative/index.html] by Daniel Podolsky.

http://nil59.pisem.net/fwbuilder-relative/index.html
http://nil59.pisem.net/fwbuilder-relative/index.html
http://nil59.pisem.net/fwbuilder-relative/index.html

Integration with OS Run-
ning on the Firewall Machine

305

Another option is to copy generated files firewall-ipf.conf and firewall-nat.conf to the directory /etc/ on
the firewall machine using the names ipf.rules and ipnat.rules and then use the standard way of loading
an ipfilter policy. In order to activate it, edit file /etc/rc.conf by adding the following lines to it:

ipfilter_enable="YES" # Set to YES to enable ipfilter functionality
ipfilter_program="/sbin/ipf" # where the ipfilter program lives
ipfilter_rules="/etc/ipf.rules" # rules definition file for ipfilter, see
/usr/src/contrib/ipfilter/rules for examples
ipnat_enable="YES" # Set to YES to enable ipnat functionality
ipnat_program="/sbin/ipnat" # where the ipnat program lives
ipnat_rules="/etc/ipnat.rules" # rules definition file for ipnat

306

Chapter 13. Configlets
Generated firewall scripts are assembled from fragments called "configlets." Each configlet is a template.
The program replaces configlet macros with actual strings and values when it generates a firewall config-
uration. Normally, you don't need to think about them.

However, if you have the need, you can use your own configlets or modify the existing ones. Using your
own configlets, you can change virtually all aspects of generated configuration files.

Default configlets are stored in "/usr/share/fwbuilder-4.0.0/configlets" on Linux, "C:
\FWBuilder40\resources\configlets on Windows", and "fwbuilder400.app/Contents/Resources/configlets"
on a Mac. If you create a "fwbuilder/configlets" directory in your home directory and place files with
the same name there, Firewall Builder will use those configlets instead. You need to retain the structure
of subdirectories inside this directory. For example, Linux configlets stored in "$HOME/fwbuilder/con-
figlets/linux24" will override the configlets installed in "/usr/share/fwbuilder/configlets/linux24".

Configlets provide the commands the built-in policy installer needs to install the policy on the firewall. Two
configlets are used for Unix-based firewalls (Linux, OpenWRT, Sveasoft, IPCOP and its variants, Open-
BSD, FreeBSD, MacOSX, Solaris): "installer_commands_reg_user" and "installer_commands_root". You
can change the behavior of the installer without having to touch C++ code: just create a copy of the con-
figlet file in $HOME/fwbuilder/configlets and modify it.

13.1. Configlet Example
In this section, we'll show how modifying a configlet lets you tailor your generated configuration file.

First, we'll generate a basic firewall policy using the "fw template 1" template. (See the Firewall Object
section, Section 5.2.2, for details.)

Then, we'll tell the firewall to always accept SSH connections from the management server at
192.168.1.100. To do this, we select Firewall Settings from the firewall's object editor panel, then enter
the management server IP address in the "Always permit ssh access from the management workstation
with this address" field.

Configlets

307

Figure 13.1. Firewall Settings Dialog (iptables)

We then save and compile the firewall. If we look into the generated .fw file, we see the following:

================ Table 'filter', automatic rules
accept established sessions
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
backup ssh access
$IPTABLES -A INPUT -p tcp -m tcp -s 192.168.1.100/255.255.255.255 \
 --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT
$IPTABLES -A OUTPUT -p tcp -m tcp -d 192.168.1.100/255.255.255.255 \
 --sport 22 -m state --state ESTABLISHED,RELATED -j ACCEPT

Configlets

308

Now suppose we want to limit SSH access from the management workstation so that it can only connect
to the management interface of the firewall.

First, we copy "/usr/share/fwbuilder-4.0.0/configlets/linux24/automatic_rules" to "$HOME/fw-
builder/configlets/linux24/automatic_rules".

Then, we open our copy of automatic_rules in a text editor and look for this section of the code:

{{if mgmt_access}}
backup ssh access
{{$begin_rule}} INPUT -p tcp -m tcp -s {{$ssh_management_address}} --dport 22 \
 -m state --state NEW,ESTABLISHED -j ACCEPT {{$end_rule}}
{{$begin_rule}} OUTPUT -p tcp -m tcp -d {{$ssh_management_address}} --sport 22 \
 -m state --state ESTABLISHED,RELATED -j ACCEPT {{$end_rule}}
{{endif}}

To limit SSH connections to the management interface of the firewall, we modify the configlet as follows:

{{if mgmt_access}}
backup ssh access
{{$begin_rule}} INPUT -i {{$management_interface}} -p tcp -m tcp \
 -s {{$ssh_management_address}} --dport 22 \
 -m state --state NEW,ESTABLISHED -j ACCEPT {{$end_rule}}
{{$begin_rule}} OUTPUT -o {{$management_interface}} -p tcp -m tcp \
 -d {{$ssh_management_address}} --sport 22 \
 -m state --state ESTABLISHED,RELATED -j ACCEPT {{$end_rule}}
{{endif}}

The variable "{{$management_interface}}" is not used by the original configlet, but it is documented in
the comment at the top of the configlet file.

Now we can save the configlet and recompile the firewall. Then, we look at the generated .fw file again.

================ Table 'filter', automatic rules
accept established sessions
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
backup ssh access
$IPTABLES -A INPUT -i eth1 -p tcp -m tcp \
 -s 192.168.1.100/255.255.255.255 --dport 22 \
 -m state --state NEW,ESTABLISHED -j ACCEPT
$IPTABLES -A OUTPUT -o eth1 -p tcp -m tcp \
 -d 192.168.1.100/255.255.255.255 --sport 22 \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

As you can see, the rules, instead of being general, now specify eth1.

309

Chapter 14. Firewall Builder Cookbook
The solutions to many security and firewall issues aren't always obvious. This chapter provides cook-
book-like examples.

14.1. Changing IP addresses in Firewall Config-
uration Created from a Template

When a firewall object is created from a template, its IP addresses might not match the addresses used in
your network. This section demonstrates how these addresses can be changed.

We start with a firewall object created in with a three-interface template and the IP address used for the in-
ternal network is 192.168.1.0/255.255.255.0. Suppose we need to change it to 172.16.22.0/255.255.255.0.
We need to change the IP address of the internal interface of the firewall, as well as the address used in
the policy and NAT rules.

To begin, find the IP address of the internal interface of the firewall in the tree and double-click it to open
it in the editor.

Figure 14.1. New Firewall

Edit the IP address (and possibly the netmask if needed), then click "Apply". This changes the IP address
of the interface of the firewall.

Firewall Builder Cookbook

310

Figure 14.2. Edit the Network Address

Now we need to change the IP address used in the rules. To do this, we create a new network object with
the correct address and replace the object net-192.168.1.0 in all rules with this new network object.

Use New Object menu to create the network object.

Figure 14.3. Creating a New Network Object

A new network object is created with default name "New Network" and IP address 0.0.0.0.

Firewall Builder Cookbook

311

Figure 14.4. New Object

Edit the object name and address, then click Apply.

Figure 14.5. Edit Name and Address

Select Object/Find to activate the search and replace dialog.

Figure 14.6. Activate Find Dialog

Drag and drop the object "net-192.168.1.0" from a policy rule or from its location in the "Standard" library
to the left object field in the search and replace dialog.

Firewall Builder Cookbook

312

Figure 14.7. Drag the Original Object to the Find Field

Locate the new network object you just created and drag and drop it to the right object field in the search
and replace dialog.

Figure 14.8. Drag the New Object to the Replace Field

Change the scope to Policy of all firewalls and click Replace all. If you have many firewalls in the tree
and you only want to replace in this one, use the scope policy of the opened firewall instead. A pop-up
dialog appears telling you how many replacements have been done.

Figure 14.9. Drag the New Object to the Replace Field

Firewall Builder Cookbook

313

Note how the search and replace function replaced the object "net-192.168.1.0" with "internal net" in the
NAT rules as well.

If the IP address used for the DMZ network in this template does not match your configuration, you can
change it using the same procedure.

Figure 14.10. New object used in all rule sets

14.2. Examples of Access Policy Rules

14.2.1. Firewall Object used in Eexamples

We start with the firewall object that looks like the one shown on Figure 14.11. This firewall has three
interfaces: eth0 (outside), eth1 (inside) and loopback. All addresses are assigned statically. The address of
the inside interface "eth1" is 192.168.1.1/24; we also have a network object with name "net-192.168.1.0"
that defines the internal network 192.168.1.0/24.

To illustrate generated configurations for platforms other than iptables/Linux in this chapter, I am using
similarly configured firewall objects with different platform and host OS settings.

Figure 14.11. Firewall and Its Interfaces Used in the Examples in this Chapter.

14.2.2. Permit Internal LAN to Connect to the Internet

In this example, we create a rule to permit our internal LAN to connect to the Internet using any protocol.
The network object "net-192.168.1.0" should be configured with the IP address and netmask correspond-
ing to those used on the internal network behind the firewall. Since the internal LAN in this example uses
a private address block, the rules described here are insufficient and should be accompanied with corre-
sponding NAT (Network Address Translation) rules. We discuss NAT rules in the next chapter.

Firewall Builder Cookbook

314

Figure 14.12. Permit the Internal Network to Connect to the Internet

Here are the iptables commands generated for this example:

$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Rule 0 (global)

$IPTABLES -A INPUT -s 192.168.1.0/24 -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -s 192.168.1.0/24 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -s 192.168.1.0/24 -m state --state NEW -j ACCEPT

Rule 1 (global)

$IPTABLES -N RULE_1
$IPTABLES -A OUTPUT -j RULE_1
$IPTABLES -A INPUT -j RULE_1
$IPTABLES -A FORWARD -j RULE_1
$IPTABLES -A RULE_1 -j LOG --log-level info --log-prefix "RULE 1 -- DENY "
$IPTABLES -A RULE_1 -j DROP

Rules that utilize the module state and match states ESTABLISHED,RELATED permit reply packets, such
as TCP ACKs, UDP reply packets, and ICMP messages associated with known sessions. These rules are
automatically added at the beginning of the generated iptables script if the option "Accept ESTABLISHED
and RELATED packets before the first rule" is turned on in the firewall object "Advanced" settings dialog.
If you turn this option off, the rule will not be added automatically and you'll have to add it yourself. You
can use the Custom Service object ESTABLISHED, which you can find in the Standard objects library,
to do this.

The first rule was placed in all three chains: INPUT, OUTPUT and FORWARD because option "Assume
firewall is part of any" was turned on in the "Advanced" settings dialog of this firewall object. This option
directs the policy compiler to assume that the object "Any" matches the firewall itself as well. In other
words, using "Any" in the Destination of the rule is equivalent to using a combination of any address and
the firewall. To match packets headed for the firewall, the rule should be placed in the INPUT chain. Also,
the network object within address 192.168.1.0/24 matches one of the interfaces of the firewall that has an
address on this network. This means that this rule should also match packets sent by the firewall itself,
provided the source address is that of the interface on the internal net. This requires the iptables command
in the OUTPUT chain. And finally, the iptables command in the FORWARD chain matches packets sent
by machines on the internal network.

Rule #1 catches all other packets going to, from, and across the firewall, and logs and drops them.

Let's see what gets generated for iptables if the option "Assume firewall is part of any" is turned off:

Firewall Builder Cookbook

315

$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Rule 0 (global)

$IPTABLES -A FORWARD -s 192.168.1.0/24 -m state --state NEW -j ACCEPT

Rule 1 (global)

$IPTABLES -N RULE_1
$IPTABLES -A FORWARD -j RULE_1
$IPTABLES -A RULE_1 -j LOG --log-level info --log-prefix "RULE 1 -- DENY "
$IPTABLES -A RULE_1 -j DROP

Automatically-added rules that match packets in states ESTABLISHED,RELATED are not affected by the
"Assume firewall is part of any" option and always match in the chains INPUT, OUTPUT and FORWARD.

Since the compiler does not assume the firewall matches "any" anymore, the rule with "any" is destination
yields an iptables command only in the FORWARD chain. This applies both to the rule that permits
outgoing connections from internal LAN and to the "Catch all" rule #1. The choice of the setting for this
option is up to the policy designer. Some people find it more intuitive to leave it off and add rules to control
access to and from the firewall explicitly. Note that default policy for all chains is set to DROP with the
following commands at the very top of the generated iptables script:

$IPTABLES -P OUTPUT DROP
$IPTABLES -P INPUT DROP
$IPTABLES -P FORWARD DROP

This means that if you do not add rules to permit access to the firewall and turn option "Assume firewall
is part of any" off, then all generated iptables rules will be in the FORWARD chain and all access to the
firewall itself will be blocked by the default policy in the INPUT chain. On the other hand, if the option
"Assume firewall is part of any" is on, then the rule permitting access from internal network to "any" has a
side-effect of permitting access to the firewall as well. It is up to you to decide whether this is the desired
behavior. You can always restrict access to the firewall and control it with a few rules somewhere close
to the beginning of the policy, regardless of the setting of this option. We look at the examples of rules
controlling access to the firewall in Section 14.2.10.

Even if you choose to turn option "Assume firewall is part of any" off and do not add any rules to permit
access to the firewall in your policy rule set, you can use another option in the firewall object "advanced"
settings dialog for this. The option is called "Always permit ssh access to the firewall from management
station" and allows you to enter a single IP address or subnet; it then automatically adds a rule to the
generated script to permit SSH access to the firewall from this address. We demonstrate this feature in
one of the examples below.

The examples below have been compiled with the option "Assume firewall is part of any" turned on.

Here is the PF configuration created for the same rules:

Firewall Builder Cookbook

316

Rule 0 (global)

pass quick inet from 192.168.1.0/24 to any keep state

Rule 1 (global)

block log quick inet from any to any

Firewall Builder always generates PF configuration using its "quick" clause to switch to the first-match
mode. In this PF configuration example, the first rule permits packets with source address on the
192.168.1.0/24 network and stops processing. The second rule will only inspect packets not matched by
the first rule.

Here is the fragment of the PIX config generated for the same combination of rules:

 Rule 0 (global)
!
access-list inside_acl_in remark 0 (global)
access-list inside_acl_in permit ip 192.168.1.0 255.255.255.0 any
!
! Rule 1 (global)
!
access-list outside_acl_in remark 1 (global)
access-list outside_acl_in deny ip any any log 4 interval 300
access-list dmz50_acl_in remark 1 (global)
access-list dmz50_acl_in deny ip any any log 4 interval 300
access-list inside_acl_in remark 1 (global)
access-list inside_acl_in deny ip any any log 4 interval 300

access-group dmz50_acl_in in interface dmz50
access-group inside_acl_in in interface inside
access-group outside_acl_in in interface outside

Since the source address in the rule #0 is limited to the internal network, the policy compiler was able
to determine which interface the access list command should be associated with and added it only to the
ACL "inside_acl_in".

The "access-group" commands are actually located at the very bottom of the generated script, after all
other access-list commands. It is shown right next to the ACL rules here for presentation.

14.2.3. Allowing Specific Protocols Through, while
Blocking Everything Else

This is one of the simplest, most basic tasks you may want your firewall to do: block all the traffic while
letting certain protocols through. Let's assume that we have a network consisting of just the firewall "fire-
wall1" and a few hosts behind it. We want to let SMTP through to the mail server from the Internet and
block everything else. All we need to do is put the following rules in the Global Policy:

Figure 14.13. Example of a Rule Permitting Only Certain Protocols to the Server
and Blocking Everything Else.

Firewall Builder Cookbook

317

Rule #0 allows SMTP through to the server, while rule #1 blocks and logs everything else. It is worth
mentioning that this policy also blocks all the access to firewall itself, including access to it from internal
hosts.

We do not need any additional rules to take care of "reply" packets coming back from the server to clients
because our underlying firewall software supports stateful inspection and "understands" that such packets
should be let through.

Here is the iptables script generated for these two simple rules:

$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

Rule 0 (global)

$IPTABLES -A OUTPUT -p tcp -m tcp -d 192.168.1.100 \
 --dport 25 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp -m tcp -d 192.168.1.100 \
 --dport 25 -m state --state NEW -j ACCEPT

Rule 1 (global)

$IPTABLES -N RULE_1
$IPTABLES -A OUTPUT -m state --state NEW -j RULE_1
$IPTABLES -A INPUT -m state --state NEW -j RULE_1
$IPTABLES -A FORWARD -m state --state NEW -j RULE_1
$IPTABLES -A RULE_1 -j LOG --log-level info --log-prefix "RULE 1 -- DENY "
$IPTABLES -A RULE_1 -j DROP

The generated iptables rules were placed in both OUTPUT and FORWARD chains because the option
"Assume firewall is part of any" was turned on in the "Advanced" settings dialog of this firewall object.
This option directs the policy compiler to assume that the object "Any" matches the firewall itself as well.
In other words, using "Any" in Source of the rule was equivalent to using a combination of any address and
the firewall. The resultant iptables commands should be placed in the OUTPUT chain to match packets
generated by the firewall and FORWARD to match packets crossing the firewall. If you turn this option
off, the program will only generate iptables rules in the FORWARD chain for this rule.

Here is the code generated for PF for the same rule:

Rule 0 (global)

pass quick inet proto tcp from any to 192.168.1.100 port 25 keep state

Rule 1 (global)

block log quick inet from any to any

In PF, we do not have to worry about chains and there is no option "Assume firewall is part of any" because
there is no difference.

Here is the code generated for PIX for the same rule:

Firewall Builder Cookbook

318

! Rule 0 (global)
!
access-list outside_acl_in remark 0 (global)
access-list outside_acl_in permit tcp any host 192.168.1.100 eq 25
access-list dmz50_acl_in remark 0 (global)
access-list dmz50_acl_in permit tcp any host 192.168.1.100 eq 25
access-list inside_acl_in remark 0 (global)
access-list inside_acl_in permit tcp any host 192.168.1.100 eq 25
!
! Rule 1 (global)
!
access-list outside_acl_in remark 1 (global)
access-list outside_acl_in deny ip any any log 0 interval 300
access-list dmz50_acl_in remark 1 (global)
access-list dmz50_acl_in deny ip any any log 0 interval 300
access-list inside_acl_in remark 1 (global)
access-list inside_acl_in deny ip any any log 0 interval 300

In PIX, all access lists must be attached to interfaces of the firewall. Since the rule did not specify source
address, the program has to generate access lists that would match any source, which means they should
be attached to all interfaces of the firewall. Since my PIX test object has three interfaces: outside, inside
and dmz, I ended up with ACL lines in three access lists, one for each interface.

14.2.4. Letting Certain Protocols through from a Specific
Source.

In this example, we look at the rule that is similar to the previous one, but also matches source address.
This rule permits access to the mail server inside from mail relay on DMZ and from no other source.
Generated rules for iptables and pf are very similar, they just add source address matching. Generated
rules for PIX are different because now the program can intelligently pick the right access list and avoid
generating redundant rules.

Figure 14.14. A Rule Permitting only Certain Protocols from a Limited Set of
Sources to the Server.

Here is the code generated for iptables from this rule:

Rule 0 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -s 192.168.2.22 -d 192.168.1.100 \
 --dport 25 -m state --state NEW -j ACCEPT

Since the source rule element was limited to the host on DMZ, the generated iptables rule is placed only
in the FORWARD chain and also matches the source using "-s" clause.

Let's look at the configuration generated for PIX from the same rule:

Firewall Builder Cookbook

319

! Rule 0 (global)
!
access-list dmz50_acl_in remark 0 (global)
access-list dmz50_acl_in permit tcp host 192.168.2.22 host 192.168.1.100 eq 25

access-group dmz50_acl_in in interface dmz50
access-group inside_acl_in in interface inside
access-group outside_acl_in in interface outside

The rule was placed only in the access list attached to the DMZ interface, because packets with source
address of the host on DMZ can only cross this interface of the firewall, assuming that spoofed packets
are blocked by special rule, which is discuss below.

14.2.5. Interchangeable and non-interchangeable objects

In the previous example, we put object "mail server" into the Destination field of the policy rule #0, because
our goal was to permit the protocol SMTP to that host and not to any other one. This actually reflects the
general principle Firewall Builder is based on: put the object for which you want to control access in the
Source or Destination field of the policy rule. Two different objects with the same address may or may
not be interchangeable, depending on their type and other parameters. One of the frequent mistakes is to
create a host object with the IP address of the firewall, then use it in the policy and expect Firewall Builder
to build a policy controlling access to the firewall. Unfortunately, it does not always work that way. If you
wish to control access to or from the firewall machine, then put the firewall object into the policy rule.

Another example of two objects which may on the first glance represent the same thing, but in fact are
not interchangeable, is an IP service object with the protocol number set to 1 and an ICMP service object
with type and code set to "any". Both objects seem to represent the same type of service, namely "Any
ICMP message". IP protocol 1 is in fact ICMP, so one would expect the behaviour of the firewall to be
the same regardless of what type of service object is used. However, the target firewall software typically
uses special syntax for indication of different protocols, so using specific syntax for ICMP protocol turns
certain features on; for example, session state tracking and association of the ICMP packets to known
sessions these packets might carry error messages for. Using just IP with protocol number 1 will most
likely not turn these features on and therefore will lead to unexpected results.

An interface object and its IP address are interchangeable in rules, provided the interface has only one
address. If the interface object has several address child objects, then using the interface object in a rule is
equivalent to using all of its addresses in the same place. If interface has only one address, then the result
will be the same whether you put interface object or its address in the rule. Also, using the firewall object
in the rule should yield the same policy script as if you put all its interfaces in the same place instead.
This one comes with a caveat though: many firewall platforms offer special syntax for rules that control
access to or from the firewall itself and Firewall Builder takes advantage of this syntax, so the result may
not look exactly the same, but should be equivalent in function. Some platforms, such as iptables, require
using different chain to control access to and from firewall. Firewall Builder compares IP addresses used
in the source and destination of rules to addresses of all interfaces of the firewall and uses proper chains,
even if the address object in the rule is not the firewall object itself.

Two objects of the same type with different names but the same values of all other parameters are always
interchangeable. Using different objects to describe the same object may be confusing, but the final firewall
policy will be correct. Firewall Builder leaves design of the objects up to the firewall administrator.

Firewall Builder Cookbook

320

14.2.6. Anti-spoofing rules

Generally speaking, IP spoofing is a technique of generating IP packets with a source address that belongs
to someone else. Spoofing creates a danger when hosts on the LAN permit access to their resources and
services to trusted hosts by checking the source IP of the packets. Using spoofing, an intruder can fake the
source address of his packets and make them look like they originated on the trusted hosts. The basic idea
of anti-spoofing protection is to create a firewall rule assigned to the external interface of the firewall that
examines source address of all packets crossing that interface coming from outside. If the address belongs
to the internal network or the firewall itself, the packet is dropped.

Simple anti-spoofing rule looks like shown on Figure 14.15. Unlike the rule in the previous example,
anti-spoofing rule requires matching of the interface and direction. The idea is that packets that come from
outside must not have source addresses that match internal network or the firewall itself. The only way
to distinguish packets coming from outside from those coming from inside is to check which interface
of the firewall they cross and in which direction. Here the rule matches interface eth0, which is external,
and direction inbound.

Section 5.2.2 explains how a firewall object and its interfaces can be created. Section 5.2.5 has more details
on the firewall's interfaces, their types, and other properties. Section 7.2.4 explains the concept of direction.

Figure 14.15. A Basic Anti-Spoofing Rule

Here are the iptables commands generated for this rule:

Rule 0 (eth0)

anti spoofing rule

$IPTABLES -N In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 192.0.2.1 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 192.168.1.1 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 192.168.1.0/24 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 192.0.2.1 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 192.168.1.1 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 192.168.1.0/24 -j In_RULE_0
$IPTABLES -A In_RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A In_RULE_0 -j DROP

The iptables commands were placed in INPUT and FORWARD chains to match both packets that are
headed for the firewall and through the firewall to hosts behind it. Rules match source address of the
packets and then log and drop them. Firewall Builder generated iptables commands to match all addresses
of the firewall (192.168.1.1, 192.0.2.1) and network behind it (192.168.1.0/24).

Let's see what gets generated for the same rule for PF:

Firewall Builder Cookbook

321

Tables: (1)
table <tbl.r0.s> { 192.0.2.1 , 192.168.1.1 }

Rule 0 (en0)
anti spoofing rule

block in log quick on en0 inet from <tbl.r0.s> to any
block in log quick on en0 inet from 192.168.1.0/24 to any

Here, the compiler uses tables to make generated PF code more compact. Table tbl.r0.s can be used in
other rules wherever we need to operate with all addresses of the firewall.

Here is the same rule, compiled for PIX:

! Rule 0 (Ethernet1/0)
! anti-spoofing rule
!
access-list outside_acl_in remark 0 (Ethernet1/0)
access-list outside_acl_in remark anti-spoofing rule
access-list outside_acl_in deny ip host 192.0.2.1 any
access-list outside_acl_in deny ip host 192.168.2.1 any
access-list outside_acl_in deny ip host 192.168.1.1 any
access-list outside_acl_in deny ip 192.168.1.0 255.255.255.0 any

access-group outside_acl_in in interface outside

14.2.7. Anti-Spoofing Rules for a Firewall with a Dynamic
Address

An anti-spoofing rule must match all addresses of the firewall to leave no holes. However it is difficult to do
if one interface of the firewall gets its IP address dynamically via the DHCP or PPP protocol. This address
is unknown at the compile time and proper configuration cannot be generated by just including it. Some
firewall platforms have syntax in their configuration language that provides a way to match an address of
an interface at run-time, but other platforms do not have anything like this. Let's see how Firewall Builder
works around this problem.

In this test, I use a variation of the same firewall object where external interface "eth0" is configured as
"dynamic". The anti-spoofing rule looks exactly like the rule in the previous example and matches the
same external interface "eth0", direction "inbound":

Figure 14.16. Basic Anti-Spoofing Rule

The generated iptables script looks like this:

Firewall Builder Cookbook

322

getaddr eth0 i_eth0

Rule 0 (eth0)

anti spoofing rule

$IPTABLES -N In_RULE_0
test -n "$i_eth0" && $IPTABLES -A INPUT -i eth0 -s $i_eth0 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 192.168.1.1 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 192.168.1.0/24 -j In_RULE_0
test -n "$i_eth0" && $IPTABLES -A FORWARD -i eth0 -s $i_eth0 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 192.168.1.1 -j In_RULE_0
$IPTABLES -A FORWARD -i eth0 -s 192.168.1.0/24 -j In_RULE_0
$IPTABLES -A In_RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A In_RULE_0 -j DROP

The script defines a shell function "getaddr" at the beginning. This function uses "ip addr show" command
to determine the actual address of the interface at the time when script is running and assigns the address
to the shell variable i_eth0. The iptables commands then use this variable to build rules matching address
of this interface. Otherwise, generated rules are the same as in the previous example.

Here is what is generated for PF:

table <tbl.r0.d> { en0 , 192.168.1.1 }

Rule 0 (en0)
anti spoofing rule

block in log quick on en0 inet from <tbl.r0.d> to any
block in log quick on en0 inet from 192.168.1.0/24 to any

In PF, one can place interface name ("en0") in the table and PF will use its address at the execution time.

Unfortunately there is no workaround for this problem for PIX.

14.2.8. Using Groups

Sometimes we need to define a lot of very similar rules for multiple hosts or networks. For example, there
may be a need to permit the same service to 10 different hosts on the network, while still blocking it to all
others. The simplest way to accomplish this is to add 10 rules with the same source and service fields and
just different destinations. Another method is to add 10 objects to the Source or Destination rule element
of the same rule. Either method can clutter the firewall policy and make it less readable. To avoid this, we
can use groups. A group is just a container which includes references to multiple objects of the same or
similar type. Firewall Builder supports groups of objects and groups of services. You can put "Address",
"Host", "Network" and "Firewall" objects in an object group, but you cannot put service objects in such
a group. Similarly, a service group can contain "IP Service", "TCP Service", "UDP Service" and "ICMP
Service" objects, but cannot contain hosts or networks. Groups can contain other groups of the same type
as well. Figure 14.17 represents an object group used in this example.

Groups make policy rules more readable, but object groups have the additional great advantage of being
reusable. You can have many different rules using the same group object. If you ever need to add another
host or address to the group, you only need to do it once and all rules will automatically pick the change
after recompile.

Firewall Builder Cookbook

323

Figure 14.17. Object Group Consisting of Three Host Objects

To add objects to a group, simply drag them from the tree on the left into group view on the right, or use
Copy/Paste functions available via menus.

Once an appropriate group has been created, it can be used for the policy and NAT rules just like any
other object.

Figure 14.18. A Rule Using an Object Group.

Here is the iptables commands generated for this example:

Rule 0 (global)

$IPTABLES -N Cid17843X27745.0
$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -j Cid17843X27745.0
$IPTABLES -A Cid17843X27745.0 -s 192.168.1.110 -j ACCEPT
$IPTABLES -A Cid17843X27745.0 -s 192.168.1.111 -j ACCEPT
$IPTABLES -A Cid17843X27745.0 -s 192.168.1.112 -j ACCEPT

The generated iptables command is placed only in the INPUT chain because it controls access to the
firewall and not to any addresses across it. The first iptables command matches chain, tcp port and state.
If this rule does not match the packet, there is no need to waste CPU cycles checking source IP addresses.
However, if the first rule matches, it passes control to the special user-defined chain "Cid17843X27745.0",
which checks the source address of the packet. If the compiler were to generate an iptables script not using
this temporary chain, it would end up comparing the TCP port and state three times, together with each
possible source address. This can be rather wasteful if the rule is to match a lot of addresses. Separation
of the matches using a temporary chain can improve performance a lot.

The compiler decides whether to use the temporary chain not because administrator used an object group
in source in the original rule in the GUI, but because it determined that in the end it needs to compare
source address of the packet against several addresses defined in the policy. If the group contained just
one address, the generated iptables script would have consisted of just one iptables command without the
temporary chain. If there was no group in "Source" of the rule but instead all these host objects were placed
in "source" of the rule directly, the generated iptables script would look exactly like shown above, using
a temporary chain for optimization.

Here is the code generated for PF for the same rule:

Firewall Builder Cookbook

324

table <tbl.r0.d> { 192.0.2.1 , 192.168.1.1 }
table <tbl.r0.s> { 192.168.1.110 , 192.168.1.111 , 192.168.1.112 }

Rule 0 (global)

pass quick inet proto tcp from <tbl.r0.s> to <tbl.r0.d> port 22 keep state

The policy compiler for PF extensively uses tables to produce compact code. PF tables are reused when
needed.

Here is the configuration generated for PIX:

object-group network inside.id20599X27745.src.net.0
 network-object host 192.168.1.110
 network-object host 192.168.1.111
 network-object host 192.168.1.112
 exit

! Rule 0 (global)
!
access-list inside_acl_in remark 0 (global)
access-list inside_acl_in permit tcp object-group inside.id20599X27745.src.net.0
 host 192.0.2.1 eq 22
access-list inside_acl_in permit tcp object-group inside.id20599X27745.src.net.0
 host 192.168.1.1 eq 22
!

As in the case of iptables, it is not that a group object was used in the original rule what triggered using
object-group PIX clause. The compiler always checks the number of objects it needs to compare the packet
against and uses object-groups statements to optimize generated code as appropriate.

14.2.9. Using an Address Range Instead of a Group
In the example above, the three hosts used for the group "management hosts" have consecutive addresses
192.168.1.110, 192.168.1.111, 192.168.1.112. Although this example may be artificial, it allows us to
illustrate how a different type of object could be used to achieve the same goal - to permit access to
the firewall from these three addresses. The difference may be negligible when we deal with just three
addresses, but when the list gets into hundreds it may become significant.

Since addresses of the management hosts are consecutive, we can use an address range object to describe
them:

Figure 14.19. Policy for the Server

Firewall Builder Cookbook

325

We use this object in the rule just like any other object. Figure 14.20 shows the rule:

Figure 14.20. Policy for the Server

The main difference in the generated code for the rule using a address range compared to the rule using
collection of individual addresses is that compiler is allowed to optimize it. It tries to squeeze the address
range to the minimal set of address and network objects. Here is how it looks like for iptables:

Rule 0 (global)

$IPTABLES -A INPUT -s 192.168.1.110/31 -m state --state NEW -j ACCEPT
$IPTABLES -A INPUT -s 192.168.1.112 -m state --state NEW -j ACCEPT

Again, the difference may not be very great when we have only three IP addresses, but in the case of a
range that spans hundred addresses the performance gain and reduction in the size of generated script are
significant.

The generated PF and PIX configurations look similar.

14.2.10. Controlling Access to the Firewall
Suppose we need to permit SSH access to the firewall. In the simplest case we just create a rule with a
firewall object (fw) in the destination and a service object SSH in the service. The SSH service object can
be found in the Standard objects tree, under Services/TCP. Here is the rule:

Figure 14.21. SSH from Anywhere

This almost-trivial rule compiles into configurations using entirely different concepts depending on the
chosen target firewall platform. The generated iptables rule is rather simple:

Rule 0 (global)

$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT

The generated PF configuration uses tables to list all IP addresses that belong to the firewall:

table <tbl.r0.d> { 192.0.2.1 , 192.168.1.1 }

Rule 0 (global)

pass in quick inet proto tcp from any to <tbl.r0.d> port 22 keep state

The iptables platform has a concept of chains that separate different packet flow paths inside the netfilter
engine and packets headed for the firewall itself are always processed in the INPUT chain. This means the
generated iptables script could be optimized. If comparison is done in the INPUT chain, the script does

Firewall Builder Cookbook

326

not have to verify the destination address to make sure it belongs to the firewall, since this has already
been done by the kernel. PF does not have any mechanism like this, therefore generated PF configuration
must compare destination address of the packet with all addresses of the firewall. This can be done in
a more elegant way using PF tables, but still, we make the firewall compare destination address of the
packet against a list of addresses.

The ipfw platform offers a shortcut for this, called the configuration option "me". Here is how the generated
ipfw script looks for the same simple rule controlling SSH access to the firewall:

Rule 0 (global)

"$IPFW" add 10 set 1 permit tcp from any to me 22 in setup keep-state || exit 1

"me" here means any address that belongs to the firewall.

The rule #0 on Figure 14.21 matches the ssh service, which has special meaning in case of PIX. There,
control to the firewall for protocols such as SSH and Telnet is configured using special configuration
commands "ssh" and "telnet" instead of using generic access lists. Here is what we get when we compile
exactly the same rule for PIX:

! Rule 0 (global)
!
ssh 0.0.0.0 0.0.0.0 outside
ssh 0.0.0.0 0.0.0.0 dmz50
ssh 0.0.0.0 0.0.0.0 inside

The rule in this example leaves the source address "any", which is why generated PIX commands match
"0.0.0.0 0.0.0.0". Firewall Builder generated the "ssh" command for all interfaces of the PIX for the same
reason.

Obviously, this rule makes the firewall too open because it permits SSH connections to it from any host
on the Internet. It would be a good idea to restrict it so that it permitted connections only from the internal
LAN. This is easy: we just put the object "LAN" in the source of the corresponding rule:

Figure 14.22. SSH from LAN

The generated configuration for all supported firewall platforms will follow the same pattern but add
matching of the source address of the packet to make sure it comes from local LAN. In case of PIX, there
is only one "ssh" command attached to the internal interface because the program determined that network
object used in the source of the rule matches only this interface of the firewall:

! Rule 0 (global)
!
ssh 192.168.1.0 255.255.255.0 inside

This is better, but we should be careful not to permit more protocols to the firewall than we really intend
to. Let's look at the simple rule permitting connects from internal LAN to the Internet (rule #0 on the
screenshot below):

Firewall Builder Cookbook

327

Figure 14.23. LAN to Anywhere

Logic says that the destination "any" should match any address, including the ones that belong to the
firewall itself. In Firewall Builder, this can actually be changed using a checkbox in the Compiler tab of the
Firewall Settings dialog of the firewall object. If the checkbox "Assume firewall is part of any" is checked,
then the compiler generates rules assuming that "any" matches the firewall as well. So, if this option is on,
then this rule permits any connections from internal LAN to the firewall, regardless of the protocol. Here is
how we can modify the rule permitting access to the Internet to exclude the firewall from it using negation:

Figure 14.24. Negating the Firewall as a Destination from the LAN

We are now using negation in the destination; the meaning of this rule is "permit connections on any pro-
tocols from machines on the network 'LAN' to any host except the firewall". We still need a rule described
above to permit SSH to the firewall, but the rule permitting access from LAN to anywhere does not open
additional access to the firewall anymore. I am going to demonstrate the generated iptables and pf config-
urations for rules with negation like this later.

Is there any way to make it even more restrictive? It is always a good idea to restrict access to the firewall
to just one machine and use that machine to compile the policy and manage the firewall. Let's call this
machine a management station "fw-mgmt". Here is more restrictive combination of rules that permits SSH
access to the firewall only from fw-mgmt, permits access from LAN to anywhere except the firewall on any
protocol and blocks everything else. This combination of rules works the same regardless of the setting
of the option "Assume firewall is part of any".

Figure 14.25. Firewall Access from Only One Machine

Three rules shown above are very good at restricting access to the firewall from all sources except for the
dedicated management workstation. The problem with them is that the firewall policy is never this simple
and short. As you add more rules, you can add a rule with a side-effect of permitting access to the firewall
sooner or later. This is one of the reason many administrators prefer to keep option "Assume firewall is
part of any" turned off. In any case, it may be a good idea to build rules for the access to the firewall
explicitly and group them together. It would look like something like this:

Figure 14.26. Firewall Access from Only One Machine; All Other Access to the
Firewall Explicitly Denied

Firewall Builder Cookbook

328

I do not include the generated iptables, pf, pix code because it should be clear by now how should it look.
It is more important that rules in Firewall Builder GUI look exactly the same regardless of the chosen
target firewall platform.

Policy rules demonstrated in these examples are good at restricting access to the firewall while making
it possible to manage it remotely via SSH. The problem with these rules is that administrator has to be
careful to not break them in any way. One would think it should be hard to make an error in a policy
fragment consisting of two rules, but this happens. These two rules are just a small part of a much larger
rule set and may not be located in a prominent place right on top of it. As new rules are added to the policy,
at some point some rule located above may block access to the whole network or range of addresses that
accidentally includes management address of the firewall. This means even though the rules are there, the
access to the firewall gets blocked as soon as updated policy is uploaded and activated. This is really bad
news if the firewall machine is located far away in a remote office or data center.

To help avoid this bad (but all-too-familiar) situation, Firewall Builder offers another feature. To access it,
select the firewall object in the tree and open it in the editor, then click "Firewall Settings" button. This is
described in more details in Section 5.2.2. In the dialog that appears, locate controls shown on Figure 14.27

Figure 14.27. Option Enabling an Automatic Rule to Permit SSH Access from a
Management Workstation

Enter the single IP as shown on the screenshot or subnet definition in the input field and click "OK", then
recompile the policy. Here is what gets added on the top of the generated iptables script:

$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

backup ssh access
#
$IPTABLES -A INPUT -p tcp -m tcp -s 192.168.1.110/255.255.255.255 \
 --dport 22 -m state --state NEW,ESTABLISHED -j ACCEPT
$IPTABLES -A OUTPUT -p tcp -m tcp -d 192.168.1.110/255.255.255.255 \
 --sport 22 -m state --state ESTABLISHED,RELATED -j ACCEPT

I included rules matching "ESTABLISHED,RELATED" states in the screenshot to demonstrate that auto-
matic rule for SSH access is added right after them. In other words, the SSH access rule is added at the very
beginning of the script before any other rule. There are actually two rules. One to Permit inbound packets
in chain INPUT; it matches the protocol TCP, destination port 22, and states "NEW,ESTABLISHED".
The other rule permits outbound packets in chain OUTPUT, also protocol TCP, source port 22, and states
"ESTABLISHED,RELATED". The purpose of this complexity is to make sure not only newly-established
SSH sessions are permitted, but also "old" ones, established before the iptables rules are purged and re-
installed during firewall configuration reload. This helps ensure that the SSH session used to activate up-
dated firewall policy does not get blocked and stall in the middle of the policy update process.

The same option is provided in the "Firewall settings" dialog for all supported firewall platforms. Firewall
Builder always generates command to permit SSH to the firewall and makes it the very first in the access
control rule set.

Now all the administrator needs to do is enter the IP address of the management workstation or address
block it belongs to in the "Firewall Settings" dialog, then recompile and update generated policy on the

Firewall Builder Cookbook

329

firewall. There is no need to remember to add a special rule to permit SSH to the firewall in the policy rule
set since this rule is now generated automatically. The generated rule is always on top of all other rules,
so any mistake in the policy rule set will never block SSH access to the firewall. This is a good way to
reduce the risk of locking yourself out of your own firewall. Using this feature is highly recommended.

14.2.11. Controlling access to different ports on the serv-
er

Firewall Builder can be used to generate a policy for the firewall running on the server. Here is an example
that shows how to set up a policy to permit access to different ports on the server. First of all, we need
to create a firewall object to represent our server. The only difference between this case and a usual case
where firewall protects one or more networks behind it is that for the server-firewall we only need to create
one interface besides the loopback. The following screenshot demonstrates a policy that permits access
to the web server running on this machine (both HTTP and HTTPS), as well as FTP and management
access via SSH. Rule #1 allows the server to use DNS for name resolution. The service object used in the
"Service" column in rule #1 is in fact a group that consists of TCP and UDP service objects that represent
TCP and UDP variants of the protocol (both use the same destination port 53).

Figure 14.28. Policy for server

In this example, I turned the option "Assume firewall is part of any" off to simplify generated script. Here
is the iptables script created for these rules:

Rule 0 (global)

$IPTABLES -A INPUT -p tcp -m tcp -m multiport --dports 80,443,21,22 \
 -m state --state NEW -j ACCEPT

Rule 1 (global)
#
$IPTABLES -A OUTPUT -p tcp -m tcp --dport 53 -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p udp -m udp --dport 53 -m state --state NEW -j ACCEPT

Rule 2 (global)

$IPTABLES -N RULE_2
$IPTABLES -A INPUT -j RULE_2
$IPTABLES -A RULE_2 -j LOG --log-level info --log-prefix "RULE 2 -- DENY "
$IPTABLES -A RULE_2 -j DROP

Firewall Builder optimized the generated rule and used the module multiport to put all four TCP ports used
in rule #0 in one iptables command. The program always uses the module multiport to make generated
script more compact, even if you use a mix of TCP, UDP, and ICMP services in the same rule. Since
iptables does not support using a mix of protocols in the same command, the program generates several
iptables commands, one for each protocol, but still can use the module multiport in each command if there
are several ports to match.

Firewall Builder Cookbook

330

Rule #1 was split because it matches both TCP and UDP protocols. Because of that, in the generated
iptables script we have one command for tcp and another for udp.

Note how iptables commands generated for rule #0 went into chain INPUT, whereas commands generated
for rule #1 went into chain OUTPUT. Rule #0 controls access to the server (object "server" is in "Desti-
nation" in the rule) but rule #1 controls connections initiated by the server (object "server" is in "Source"
of the rule). Firewall Builder picks the right chain automatically.

Generated PF script uses tables to match four tcp ports in the same rule:

Rule 0 (global)

pass in quick inet proto tcp from any to 192.168.1.10 \
 port { 80, 443, 21, 22 } keep state

Rule 1 (global)

pass out quick inet proto tcp from 192.168.1.10 to any port 53 keep state
pass out quick inet proto udp from 192.168.1.10 to any port 53 keep state

Rule 2 (global)

block in log quick inet from any to 192.168.1.10

Sometimes the web server is bound to several IP addresses on the same machine. One typical situation
when this is needed is when the web server supports multiple sites using the HTTPS protocol. The fol-
lowing firewall configuration demonstrates the case when interface eth0 has two IP addresses (192.0.2.1
and 192.0.2.2):

Figure 14.29. Policy for the Server

Suppose the web server should accept HTTPS connections to both IP addresses, while HTTP and FTP are
allowed only on address 192.0.2.1. The management access to the server is allowed only via protocol SSH
and only from the management workstation "fw-mgmt". The following rules enforce this policy:

Figure 14.30. Policy for server

Note

The same rules could be used to permit or deny access to different ports on a server located on
the network behind a dedicated firewall.

Firewall Builder Cookbook

331

Here is how generated iptables script looks like:

Rule 0 (global)

$IPTABLES -A INPUT -p tcp -m tcp -d 192.0.2.1 --dport 443 -m state --state NEW \
 -j ACCEPT
$IPTABLES -A INPUT -p tcp -m tcp -d 192.0.2.2 --dport 443 -m state --state NEW \
 -j ACCEPT

Rule 1 (global)

$IPTABLES -A INPUT -p tcp -m tcp -m multiport -d 192.0.2.1 --dports 80,21 \
 -m state --state NEW -j ACCEPT

Rule 2 (global)

$IPTABLES -A INPUT -p tcp -m tcp -s 192.0.2.100 -d 192.0.2.1 --dport 22 \
 -m state --state NEW -j ACCEPT

These iptables commands should be quite obvious. PF rules in this example also look very familiar:

Tables: (1)
table <tbl.r0.d> { 192.0.2.1 , 192.0.2.2 }

Rule 0 (global)

pass quick inet proto tcp from any to <tbl.r0.d> port 443 keep state

Rule 1 (global)

pass quick inet proto tcp from any to 192.0.2.1 port { 80, 21 } keep state

Rule 2 (global)

pass quick inet proto tcp from 192.0.2.100 to 192.0.2.1 port 22 keep state

14.2.12. Firewall talking to itself
Many services running on the firewall machine need to be able to establish connections to the same ma-
chine. X11, RPC, DNS are services like that, to name a few. Blocking these services on the firewall can
cause various problems, depending on what protocol is being blocked. If it is DNS, then it may take a
lot longer than usual to get to a command-line prompt when logging in to the machine using Telnet or
SSH. Once logged in, you won't be able to resolve any host names into addresses. If X11 is blocked, then
X server and any graphic environment using it (KDE, Gnome etc.) won't start. In any case though the
problem can easily be solved by adding a simple any-any rule and specifying the loopback interface of
the firewall to permit all sorts of communications. As shown on Figure 14.31, this rule must specify the
loopback interface, have action Accept and direction Both.

Figure 14.31. Rule Permitting Everything on the Loopback Interface

Firewall Builder Cookbook

332

Note

Running X11 and other complex services on the dedicated firewall machine should be discour-
aged. However, you may want to run a firewall to protect a server, workstation, or laptop where
X11, RPC, and other services are perfectly normal.

The generated iptables commands are placed in INPUT and OUTPUT chains because packets sent by the
firewall to itself never hit FORWARD chain. Options "-i lo" and "-o lo" nail interface and direction:

$IPTABLES -A INPUT -i lo -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o lo -m state --state NEW -j ACCEPT

For PF, we can specify interface to match but keep direction open so both "in" and "out" will match:

pass quick on lo inet from any to any keep state

14.2.13. Blocking unwanted types of packets
Fragmented IP packets, although useful in certain situations, are often used as a tool to probe and penetrate
simple packet filters. Particular kinds of fragmented packets, namely those with incorrect length specifi-
cations, are especially bad because they can cause some operating systems to crash (for example Windows
NT was known to crash before a fix was developed and published by Microsoft). These packets therefore
are considered potentially harmful and should be blocked on the perimeter of your network. Many firewall
platforms provide ways to deal with such packets.

In Firewall Builder, we provide a way to set flags or options in the IP service object. Two options deal
with fragments: one is called "all fragments" and another "short fragments". Figure 14.32 shows how a
user-defined object called "fragments" looks with both options turned on. Policy compilers recognize this
object and generate correct code for underlying firewall software platform.

Figure 14.32. IP Service Object Representing Fragmented Packets

The "ip_fragments" object, which is included in the section "Services/IP" of the Standard objects tree, is
set to block "short" fragments only.

Another potentially harmful type of packets is so called "Christmas tree" packet. This one is just a TCP
packet with an impossible combination of TCP flags or even all TCP flags turned on at once (for example
SYN, ACK, FIN, RST, PSH). This combination is never used in real communications, so if a packet like
that appears at the boundary of your network, it should be considered illegal and blocked. Object "tcp-

Firewall Builder Cookbook

333

xmas" is included in the section "Services/TCP" of the standard objects database coming with Firewall
Builder.

Some platforms provide a mechanism to turn on and off stateful inspection on individual rules. Turning it
off on those rules which do not require it may improve performance of the firewall. Obviously, we do not
need stateful inspection while analysing fragmented packets as we do not really want any session to be
established, so we can safely use this option on this rule. One example of firewall platform which supports
stateful inspection but provides a way to turn it on and off is iptables. In Firewall Builder, this can be done
in the rule options dialog (which is platform-sensitive and shows different options for different platforms).
Figure 14.33 shows rule logging options dialog for iptables:

Figure 14.33. Rule Options Dialog for iptables Firewall

Here is an example of the policy rule which is intended to block short fragments and TCP "Christmas
scan" packets. The icon in the Options column indicates that logging is turned on.

Figure 14.34. A Rule Blocking Short Fragmented Packets and TCP "Christmas
Scan" Packets

This rule applies to all packets crossing the firewall regardless of their origin. This means that it will block
such packets originating in your network, too. If by some reason you might want to be able to send this
kind of packets out, then specify your external interface in the Interface column.

14.2.14. Using Action 'Reject': blocking Ident protocol
Suppose we want to block connections to certain ports on the server behind the firewall, but want to do
it in a "polite" manner that lets the sender host know right away that the connection attempt was blocked
so it appears that our server is not listening on that port at all. One of the practical applications of this
setup would be blocking Ident connections to a mail relay or a mail server. Sendmail and many other
MTAs (Mail Transport Agents) attempt to connect to Ident port (TCP port 113) on the mail relay every
time they accept e-mail from that relay. Many believe that the Ident protocol is practically useless and
does not really serve as a protection against SPAM or for any other useful purpose. Unfortunately, silent
blocking of Ident connections on the firewall using a rule with action "Deny" adds a delay in the e-mail
delivery. This happens because when the sender host tries to establish the Ident connection to the recipient,
it sends the TCP SYN packet to it (the first packet in three-way TCP handshake) and then waits for TCP
ACK packet in response. However, it never sees it because recipient's firewall blocked its first TCP SYN
packet. In situations like this, the sender host assumes the reply packet got lost and tries to send the TCP
SYN packet again. It repeats this for a few seconds (usually 30 sec) before it gives up. This adds a 30-

Firewall Builder Cookbook

334

second delay to e-mail delivery. Our intent is to show how one can construct a policy rule to block Ident
without causing this delay.

The simplest way to block any protocol is to use a "Deny" action in the policy rule. Since "Deny" causes
the firewall to silently drop the packet, the sender never knows what happened to it and keeps waiting for
response. To avoid this delay we will set rule Action to "Reject". Normally "Reject" makes the firewall to
send ICMP "unreachable" message back to sender, thus indicating that access to requested port is denied
by the firewall. This may be insufficient in some cases, because the host trying to connect to our Ident port
won't understand this type of ICMP message and will keep trying. In fact, most OSs do not recognize an
ICMP "administratively prohibited" message and do keep trying. To make the host on the other side stop
its attempts right away, we need to send an TCP RST packet back instead of an ICMP message. This can
be done by setting the appropriate parameter for the "Reject" action. To set an Action parameter, change
the Action to "Reject," then double-click the Reject icon to get the parameters dialog. (see Figure 14.36).
It is also safe to turn stateful inspection off on this rule since we do not want connection to be established
and therefore do not need to keep track of it.

Figure 14.35. Using a "Reject" Action with the Rule Option

Figure 14.36. Adding a Rule Option to Send an TCP RST Packet

Supported firewall platforms use different syntax for rules that should drop packets and send an ICMP or
TCP RST packet back. Here is what Firewall Builder generates for the rule shown above for iptables:

Rule 0 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -d 192.168.1.100 --dport 113 \
 -j REJECT --reject-with tcp-reset

For PF it uses "return-rst" option:

Rule 0 (global)

block return-rst quick inet proto tcp from any to 192.168.1.100 port 113

There is no equivalent configuration option for PIX.

Firewall Builder Cookbook

335

14.2.15. Using Negation in Policy Rules
Suppose we want to set up a rule to permit access from the host on DMZ net "mail_relay_1" to hosts
on the Internet, but do not want to open access from it to machines on our internal network represented
by the object "internal-network". Since we want it to connect to hosts on the Internet and cannot predict
their addresses, we have to use "any" as a destination in the policy rule. Unfortunately "any" includes our
internal net as well, which is going to open undesired hole in the firewall.

There are two solutions to this problem. First, we can use two rules: first will deny access from
"mail_relay_1" to "internal_net" and the second will permit access from "mail_relay_1" to "any". Since
rules are consulted in the order they are specified in the policy, access to the internal net will be blocked
by the first rule since the packet would hit it first. These two rules are represented on Figure 14.37

Figure 14.37. Using Two Rules to Block Access from the DMZ to the Internal Net
and Permit Access to the Internet

Here are the generated iptables rules:

Rule 0 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -s 192.168.2.22 -d 192.168.1.0/24 \
 --dport 25 -j DROP

Rule 1 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -s 192.168.2.22 --dport 25 \
 -m state --state NEW -j ACCEPT

Another solution uses negation. We can specify destination in the rule as "not internal_net", thus permit-
ting access to anything but "internal_net". Negation can be enabled and disabled in the pop-up menu which
you call by right-clicking the corresponding rule field. This rule depends on the rules below it to block
access from "mail_relay1" to the "internal_net". If the policy was built using a general principle of block-
ing everything and then enabling only types of connections that must be permitted, then it usually has a
"catch-all" rule at the bottom that blocks everything. This last rule is going to deny connections from the
"mail_relay1" to "internal_net".

Figure 14.38. Using a Rule with Negation to Block Access from the DMZ to the
Internal Net and Permit Access to the Internet

Firewall Builder can use the "!" option to generate a compact iptables command for this rule:

Rule 0 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -s 192.168.2.22 -d ! 192.168.1.0/24 \
 --dport 25 -m state --state NEW -j ACCEPT

Firewall Builder Cookbook

336

Negation Can Be Used in NAT Rules in a Similar Way

Firewall Builder can use similar "!" option for PF as well, but there is no negation in the PIX ACL syntax.

Things get more complicated if we have several networks inside and want to build a rule to permit connects
from a server on DMZ to everywhere except for the three internal networks:

Figure 14.39. Using a Rule with Negation to Block Access from DMZ to Internal
Net and Permit Access to the Internet

Simple "!" negation in the generated iptables command won't work, so the program generates the following
more complicated script:

Rule 0 (global)

$IPTABLES -N Cid168173X9037.0
$IPTABLES -A FORWARD -p tcp -m tcp -s 192.168.2.22 --dport 25 \
 -m state --state NEW -j Cid168173X9037.0
$IPTABLES -A Cid168173X9037.0 -d 192.168.1.0/24 -j RETURN
$IPTABLES -A Cid168173X9037.0 -d 192.168.10.0/24 -j RETURN
$IPTABLES -A Cid168173X9037.0 -d 192.168.20.0/24 -j RETURN
$IPTABLES -A Cid168173X9037.0 -j ACCEPT

The first rule checks protocol, port number, and source address and if they match, passes control to the
user-defined chain where destination address is compared with addresses of the three networks we want to
protect. If either one of them matches, the iptables target "RETURN" terminates analysis in the temporary
chain and returns control. Note that in this case, the firewall does not make any decision what to do with the
packet. The rule Figure 14.39 in the GUI specifies action for the packets that do not head for the internal
networks but does not say anything about those that do. Some other rules in the policy should decide what
to do with them. This is why the generated iptables script uses target "RETURN" instead of "DROP" or
"ACCEPT" to simply return from the temporary chain and continue analysis of the packet further.

For PF, Firewall Builder uses combination of the "!" option and a table:

table <tbl.r0.d> { 192.168.1.0/24 , 192.168.10.0/24 , 192.168.20.0/24 }

Rule 0 (global)

pass quick inet proto tcp from 192.168.2.22 to ! <tbl.r0.d> port 25 keep state

14.2.16. Tagging Packets
Tagging packets (or packet marking) can be a very useful option that allows you to match a packet at one
point in the rule set but act on it later on. This option can be combined with rule actions or rule branching
for even more flexibility. Tagging can also be used to interact with packet processing not intended to
enforce security policies, such as traffic shaping or QoS. Packet tags assigned by iptables can later be used
for traffic shaping with the Linux utility "tc".

Firewall Builder Cookbook

337

Not every target platform supports packet tagging; see Section 7.2.7 for details on platform support for
tagging.

In Firewall Builder, packet tagging is accomplished using a special service object type called TagService.
First, you create a TagService object, specifying a tag number or a string. To use this object to match
tagged packets, just drop the object into the Service rule element in a policy rule. To mark a packet with the
tag, select the Tag option from the Options context menu and drop the TagService object into the well in
the Options dialog. Let's use an example given in the "A Practical Guide to Linux Traffic Control" (http://
blog.edseek.com/~jasonb/articles/traffic_shaping/index.html) to illustrate this. They show how packets
can be tagged using iptables target "MARK" so that they can be placed in the right queue for traffic shaping
later on. The iptables rule we will create looks like this:

iptables -t mangle -A POSTROUTING -o eth2 -p tcp --sport 80 -j MARK --set-mark 1

Note how the rule should be placed in the table "mangle", chain "POSTROUTING". This is how the target
MARK works; the administrator is expected to know this if they write iptables rules by hand.

We start with a tag service object configured with tag "1":

Figure 14.40. Simple TagService Object

We also need a TCP service object to match source port 80:

Figure 14.41. TCP Service to Match Source Port 80

And now the rule:

Figure 14.42. Rule Matching the Tag Service

In order to replicate the rule from the Guide, I leave Source and Destination "any", put outside interface of
the firewall in "Interface" column, set direction to "Outbound", set action to "Tag" and make it stateless.
The following screenshots demonstrate how this is done:

Firewall Builder Cookbook

338

Figure 14.43. Configuring the Tag Action

Figure 14.44. Configuring Rule Options to Make the Rule Stateless

This configuration makes Firewall Builder generate an iptables command that is exactly the same as the
one given in "A Practical Guide to Linux Traffic Control."

The rule, reproduced from the Guide, is stateless and matches and tags every reply HTTP packet crossing
the firewall. This is not very efficient in case the firewall has to forward heavy HTTP traffic because
it has to work on every single packet. To make things more efficient, iptables can mark whole sessions
which means individual packets can be marked automatically as long as they belong to the session that was
marked once. To use this feature with Firewall Builder, turn on the checkbox "Mark connections created
by packets that match this rule" in the dialog Figure 14.43, where you configure options for the rule action
and where the well into which you had to drop the tag service object is located. This checkbox modifies
generated iptables script by adding a call to CONNMARK iptables target that marks whole connection
and also by adding the following rule on top of the script:

================ Table 'mangle', automatic rules
$IPTABLES -t mangle -A PREROUTING -j CONNMARK --restore-mark

This rule automatically restores mark on the packets that belong to the marked session.

14.2.17. Adding IPv6 Rules to a Policy

We start with a firewall object that has some basic IPv4 policy. First, we need to add IPv6 addresses to its
interfaces. Right-click to open the context menu associated with the interface object in the tree and click
the item "Add IPv6 address".

Firewall Builder Cookbook

339

Figure 14.45. Adding IPv6 Addresses to an Interface

Enter the address and netmask length, using the address required by your topology.

Figure 14.46. Entering Address and Netmask

Adding IPv6 to an Internal Interface

Firewall Builder Cookbook

340

Figure 14.47. The Internal Interface

We also need to create a network object to represent our local IPv6 network. Click New Network IPv6
in the new object menu.

Figure 14.48. Creating the IPv6 Network Object

Enter the name and address of this network. We are using the link-local address for illustration purposes.

Figure 14.49. The IPv6 Network Object Name and Address

Firewall Builder Cookbook

341

Inspect the regular policy object. To see its parameters, double-click it in the tree to open it in the editor
(see screenshot below). This object has a Name, IPv4/IPv6 setting and a Top ruleset checkbox. For iptables
firewalls, there is also a pair of radio buttons that indicates whether the policy should affect filter+mangle
tables or just mangle table.

Figure 14.50. Policy Parameters

The IPv4/IPv6 setting tells the compiler how it should interpret addresses of objects that appear in the
rules. Possible configurations are "IPv4 only", "IPv6 only" and "Mixed IPv4 and IPv6":

Figure 14.51. IPv4/IPv6 Rule Set Configuration

• "IPv4 only rule set" - Only addressable objects with IPv4 addresses will be used in the rules. If an object
with an IPv6 address appears in rules, it is ignored. IPv6-only services such as ICMPv6 are also ignored.
TCP and UDP services are used since they apply for both IPv4 and IPv6 rules.

• "IPv6 only rule set" Only objects with IPv6 addresses are used and those with Ipv4 addresses are ignored.
IPv6-only services such as ICMPv6 are used but IPv4-only services such as ICMP are ignored. TCP
and UDP services are used since they apply for both IPv4 and IPv6 rules.

• "Mixed IPv4 and IPv6 only rule set" The compiler makes two passes over the same rules, first to produce
IPv4 configuration and then to produce IPv6 configuration. On each pass it uses only address objects
with addresses matching address family of the pass. This is the best configuration for transitional con-
figurations when IPv6 rules are gradually added to existing IPv4 configuration. Note that if you add
IPv6 address to an interface of a firewall or a host object used in the rules, the compiler will use IPv4
addresses of the interface on IPv4 pass and new IPv6 address of the same interface on the IPv6 pass.
This principle also applies to the mixed groups of addresses and services.

Compilers treat the "top rule set" parameter differently, depending on the firewall platform:

• iptables: rules defined in such rule set will go into built-in chains INPUT,OUTPUT,FORWARD etc.
Rules defined in rule sets where this checkbox is not checked go into user-defined chain with the name
the same as the name of the rule set.

Firewall Builder Cookbook

342

• PF: rules defined in the rule set with "top rule set" checkbox turned off go into an anchor with the name
of the rule set.

• Cisco IOS access lists: if the top rule set checkbox is turned off, the rules go into access list with the
name prefixed with the name of the rule set; this access list will not be assigned to interfaces via "ip
access-group" command. Rule sets with checkbox "top rule set" checked generate ACLs with names
consisting of the shortened name of interface and direction abbreviation ("in" or "out"). Only these lists
are assigned to interfaces.

To add new policy, right-click the firewall object in the tree to open the context menu and use the menu
item Add Policy Rule Set.

Figure 14.52. Adding a Policy Rule Set

Assign a unique name to the new policy object, make it IPv6, and check the top ruleset checkbox, then
click Apply.

Firewall Builder Cookbook

343

Figure 14.53. Setring Rule Set Parameters

Now click the new policy object in the tree ("Policy_ipv6") and add some rules as usual. Here we have
added a rule to permit all on loopback, a rule to permit incoming HTTP and ICMPv6 to the firewall and a
rule to permit outgoing sessions from the internal network (object "local ipv6 net") and the firewall itself.

Figure 14.54. Adding Policy Rules

Now compile the policy. Note that in the progress output the compiler shows that it first processes IPv4
policy rule set, then compiles IPv6 policy rule set. I still have bunch of rules in the IPv4 policy from the
previous examples in this section but the IPv6 policy is small and only has a few rules as shown on the
screenshot above.

Firewall Builder Cookbook

344

$ fwb_ipt -v -f policy_rules.fwb fw
 *** Loading data ... done
 Compiling rules for 'nat' table
 processing 1 rules
 rule 0 (NAT)
 Compiling ruleset Policy for 'mangle' table
 processing 1 rules
 rule 0 (eth2)
 Compiling ruleset Policy for 'filter' table
 processing 17 rules
 rule 1 (global)
 rule 2 (global)
 rule 3 (global)
 rule 4 (global)
 rule 5 (global)
 rule 6 (global)
 rule 7 (global)
 rule 8 (global)
 rule 9 (global)
 rule 10 (global)
 rule 11 (eth2)
 rule 12 (lo)
 rule 13 (global)
 rule 14 (global)
 rule 15 (global)
 rule 16 (global)
 rule 17 (global)
 Compiling ruleset Policy_ipv6 for 'mangle' table, IPv6
 Compiling ruleset Policy_ipv6 for 'filter' table, IPv6
 processing 4 rules
 rule Policy_ipv6 1 (global)
 rule Policy_ipv6 2 (global)
 rule Policy_ipv6 3 (global)
 Compiled successfully

Here is a fragment of the generated script. The script uses the ip6tables routine to load rules into the kernel.
The option "Assume firewall is part of any" was turned off in this firewall object so the rule #1 generated
only iptables commands in the INPUT chain.

Firewall Builder Cookbook

345

================ Table 'filter', rule set Policy_ipv6
Policy compiler errors and warnings:

Rule Policy_ipv6 0 (lo)

$IP6TABLES -A INPUT -i lo -m state --state NEW -j ACCEPT
$IP6TABLES -A OUTPUT -o lo -m state --state NEW -j ACCEPT

Rule Policy_ipv6 1 (global)

echo "Rule Policy_ipv6 1 (global)"

$IP6TABLES -A INPUT -p tcp -m tcp --dport 80 -m state --state NEW -j ACCEPT
$IP6TABLES -A INPUT -p ipv6-icmp -m state --state NEW -j ACCEPT

Rule Policy_ipv6 2 (global)

echo "Rule Policy_ipv6 2 (global)"

$IP6TABLES -A OUTPUT -m state --state NEW -j ACCEPT
$IP6TABLES -A FORWARD -s 2001:db8:ffff:ffff::/64 -m state --state NEW -j ACCEPT

Rule Policy_ipv6 3 (global)

echo "Rule Policy_ipv6 3 (global)"

$IP6TABLES -N Policy_ipv6_3
$IP6TABLES -A FORWARD -j Policy_ipv6_3
$IP6TABLES -A Policy_ipv6_3 -j LOG --log-level info --log-prefix "RULE 3 -- DENY "
$IP6TABLES -A Policy_ipv6_3 -j DROP

Let's try to compile the policy rule set configured as mixed IPv4+IPv6. To illustrate, I am using two simple
rules.

Figure 14.55. Mixed IPv4/IPv6 Rule Set Parameters

Rule #0 permits everything on the loopback. The loopback interface of the firewall has two addresses:
127.0.0.1/8 and ::1/128. Rule #1 permits HTTP and any ICMPv6 to the firewall. Here is the generated
iptables script for these two rules:

Firewall Builder Cookbook

346

================ IPv4

================ Table 'filter', rule set Policy_mix
Policy compiler errors and warnings:

Rule Policy_mix 0 (lo)

$IPTABLES -A INPUT -i lo -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o lo -m state --state NEW -j ACCEPT

Rule Policy_mix 1 (global)

$IPTABLES -A INPUT -p tcp -m tcp --dport 80 -m state --state NEW -j ACCEPT

================ IPv6

================ Table 'filter', rule set Policy_mix
Policy compiler errors and warnings:

Rule Policy_mix 0 (lo)

$IP6TABLES -A INPUT -i lo -m state --state NEW -j ACCEPT
$IP6TABLES -A OUTPUT -o lo -m state --state NEW -j ACCEPT

Rule Policy_mix 1 (global)

$IP6TABLES -A INPUT -p tcp -m tcp --dport 80 -m state --state NEW -j ACCEPT
$IP6TABLES -A INPUT -p ipv6-icmp -m state --state NEW -j ACCEPT

The script has two parts, one for IPv4 and another for IPv6, generated from the same rule set "Policy_mix".
The IPv4 part has only IPv4 addresses and services. The rule that permits ICMPv6 to the firewall is missing
in this part of the script because ICMPv6 does not match the address family. The rule that permits HTTP
to the firewall is there, though. The second (IPv6) part of the script both permits HTTP and ICMPv6 to
the firewall.

Note: the rule that matches on an interface (column "Interface" is not "any") will compile for IPv6 only
if this interface has IPv6 address.

If the loopback interface of the firewall did not have an address ::1/128, then the IPv6 part of the generated
script would not have rules permitting anything on loopback (those with "-i lo" and "-o lo"). This may not
be very obvious and may be confusing at first, but this behavior is very useful during transition from purely
IPv4 network to a mix of IPv4 and IPv6 when you enable IPv6 only on some interfaces but not others.

Finally, let's look at the generated PF configuration for the same rules in the same mixed policy rule set:

Firewall Builder Cookbook

347

table <tbl.r9999.d> { 192.0.2.1 , 192.168.1.1 }
table <tbl.r1.dx> { 2001:db8:1:1::1 , 2001:db8:ffff:ffff::1 }

Rule Policy_mix 0 (lo)

pass quick on lo inet from any to any keep state

Rule Policy_mix 1 (global)

pass in quick inet proto tcp from any to <tbl.r9999.d> port 80 keep state

Rule Policy_mix 0 (lo)

pass quick on lo inet6 from any to any keep state

Rule Policy_mix 1 (global)

pass in quick inet6 proto tcp from any to <tbl.r1.dx> port 80 keep state
pass in quick inet6 proto icmp6 from any to <tbl.r1.dx> keep state

14.2.18. Using Mixed IPv4+IPv6 Rule Sets to Simplify
Adoption of IPv6

Mixed IPv4/IPv6 rule sets can be especially useful in the configuration of the router's access lists and fire-
wall policies where rules can become rather complicated when IPv6 is added to an existing IPv4 network.
Since most firewalls and routers require different syntax for IPv6 ACL and rules, administrator has to im-
plement second rule set for IPv6, carefully trying to copy existing IPv4 rules to preserve general structure
and meaning of the security policy. Things get even more complicated after that because every change in
the policy should now be reflected in two sets of ACL or firewall rules. Keeping these synchronized can
quickly turn into major task that can significantly elevate probability of human error and network outage.
Mixed IPv4+IPv6 rule sets in Firewall Builder help solve this problem.

Lets illustrate this using simplified example of a Cisco router access list configuration that we migrate
from IPv4 only to mixed IPv4+IPv6. We start with simple two rules that use only IPv4 address and service
objects:

Figure 14.56. IPv4 only rule set

In this example, the router has just two interfaces, FastEthernet0/0 and FastEthernet0/1, both interfaces
have only IPv4 addresses when we start. The generated configuration looks like this:

Firewall Builder Cookbook

348

! ================ IPv4
! Policy compiler errors and warnings:
!
no ip access-list extended fe0_0_in
no ip access-list extended fe0_1_in

ip access-list extended fe0_0_in
 permit icmp any host 192.0.2.1 8
 permit icmp any host 192.168.1.1 8
exit

ip access-list extended fe0_1_in
 permit icmp any host 192.0.2.1 8
 permit icmp any host 192.168.1.1 8
 permit tcp any 192.168.1.0 0.0.0.255 eq 80
exit

interface FastEthernet0/0
 ip access-group fe0_0_in in
exit
interface FastEthernet0/1
 ip access-group fe0_1_in in
exit

Here rule #0 permits ICMP ping requests to the firewall through all interfaces and rule #1 permits http to
internal network through interface FastEthernet0/1 (external), direction inbound. As the result, we get two
access lists "fe0_0_in" and "fw0_1_in", one for each interface, that reflect these rules.

Suppose we need to add IPv6 to this network. To do this, I add IPv6 addresses to the interfaces of the router
and create a network object to describe IPv6 internal network. I then add a new IPv6 network object to the
rule #1 to permit HTTP to internal net both on IPv4 and IPv6. Rule #0 should also permit ICMPv6 neighbor
solicitation and advertisement messages, as well as ICMPv6 ping since it is different from IPv4 ICMP
ping. Lets permit any ICMPv6 to the internal network as well. I'll just add IPv6 objects to existing rules,
mark rule set as "Mixed IPv4 and IPv6" and let the program sort it out. Here is how the updated rules look:

Figure 14.57. Mixed IPv4/IPv6 Rule Set

Now the router has the same two interfaces, FastEthernet0/0 and FastEthernet0/1, but both interfaces have
IPv4 and IPv6 addresses. Here is the result:

Firewall Builder Cookbook

349

! ================ IPv4
! Policy compiler errors and warnings:
!
no ip access-list extended fe0_0_in
no ip access-list extended fe0_1_in

ip access-list extended fe0_0_in
 permit icmp any host 192.0.2.1 8
 permit icmp any host 192.168.1.1 8
exit

ip access-list extended fe0_1_in
 permit icmp any host 192.0.2.1 8
 permit icmp any host 192.168.1.1 8
 permit tcp any 192.168.1.0 0.0.0.255 eq 80
exit

interface FastEthernet0/0
 ip access-group fe0_0_in in
exit
interface FastEthernet0/1
 ip access-group fe0_1_in in
exit

! ================ IPv6
! Policy compiler errors and warnings:
!
no ipv6 access-list ipv6_fe0_0_in
no ipv6 access-list ipv6_fe0_1_in

ipv6 access-list ipv6_fe0_0_in
 permit icmp any host 2001:db8:1:1::1 135
 permit icmp any host 2001:db8:1:1::1 136
 permit icmp any host 2001:db8:1:1::1 128
 permit icmp any host 2001:db8:ffff:ffff::1 135
 permit icmp any host 2001:db8:ffff:ffff::1 136
 permit icmp any host 2001:db8:ffff:ffff::1 128
exit

ipv6 access-list ipv6_fe0_1_in
 permit icmp any host 2001:db8:1:1::1 135
 permit icmp any host 2001:db8:1:1::1 136
 permit icmp any host 2001:db8:1:1::1 128
 permit icmp any host 2001:db8:ffff:ffff::1 135
 permit icmp any host 2001:db8:ffff:ffff::1 136
 permit icmp any host 2001:db8:ffff:ffff::1 128
 permit tcp any 2001:db8:ffff:ffff::/64 eq 80
 permit icmp any 2001:db8:ffff:ffff::/64
exit

interface FastEthernet0/0
 ipv6 traffic-filter ipv6_fe0_0_in in
exit
interface FastEthernet0/1
 ipv6 traffic-filter ipv6_fe0_1_in in
exit

The IPv4 part looks exactly the same as before, but we also have additional IPv6 access lists. For IPv6,
rule #1 permits ICMPv6 neighbor solicitation, neighbor advertisement, and IPv6 ping request messages
to the firewall through all interfaces, direction inbound, and rule #1 permits HTTP and all ICMPv6 to
the internal network through FastEthernet0/1, inbound. Generated IPv6 access lists "ipv6_fe0_0_in" and
"ipv6_fe0_1_in" reflect this. ACL ipv6_fe0_0_in permits icmp types 128, 135 and 136 to IPv6 addresses

Firewall Builder Cookbook

350

that belong to the firewall and ACL ipv6_fe0_1_in permits the same ICMP messages to the firewall, plus
TCP port 80 and any IPv6 ICMP to the internal IPv6 network.

The program automatically separated IPv4 and IPv6 objects and created two sets of access lists to imple-
ment policies for both address families. This simplifies adoption of IPv6 into existing network because you
don't have to reimplement access lists and firewall rules written for IPv4 again and then maintain two rule
sets coordinated as you make changes. Instead, the structure of existing policy rule set is preserved, you just
add IPv6 objects to the same rules and the program generates both IPv4 and IPv6 configurations from it.

14.2.19. Running Multiple Services on the Same Machine
on Different Virtual Addresses and Different Ports

Here is an example of how Firewall Builder can be used to build a firewall protecting a server. Suppose
we run several secure web servers on the same machine and use virtual IP addresses to be able to supply
different certificates for each one.

In addition, we run the webmin service on the same machine that we use to manage it. We need to permit
access on protocol HTTPS to virtual addresses web servers are using from anywhere, and limited access
to the webmin port on a specific address.

Here is the firewall object:

Figure 14.58. Firewall Object with Multiple Services

Here are the policy rules:

Figure 14.59. Policy Rules

Access to the webmin service is only permitted from the local network, while access to the secure web
servers running on virtual addresses fxp0-ip1, fxp0-ip2 and fxp0-ip3 is permitted from anywhere.

The following screenshot illustrates how the TCP service object webmin is created.

Firewall Builder Cookbook

351

Figure 14.60. webmin object

The webmin service uses port 10000, so we put this port number in both the beginning and end of the des-
tination port range. We do not need to do any inspection of the TCP flags and leave all of them unchecked
in this object.

14.2.20. Using a Firewall as the DHCP and DNS Server
for the Local Net

It is often convenient to use a firewall as a DHCP and DNS server for the local net, especially in small
installations like that in a home office. It is not really difficult, but building rules properly requires under-
standing of how DHCP and DNS work.

The following combination of rules permits machines on the local net to use the firewall as DHCP server:

Figure 14.61. Rules with DHCP

The first rule permits two types of DHCP requests: the initial discovery request that is sent to the broadcast
address 255.255.255.255 and the renewal request that is sent to the firewall's address. The address range
object "broadcast" can be found in the Standard objects tree, under Objects/Address Ranges; this object
defines broadcast address 255.255.255.255. The second rule in the pair permits DHCP replies sent by the
firewall. The Service object "DHCP" can be found in the "Standard" objects tree, under Services/Groups.

We could make these rules more narrow if we used the internal interface of the firewall in place of the
firewall object. Assuming interface eth0 is connected to the internal net, the rules would look like this:

Figure 14.62. Rules with DHCP Using a Firewall Interface

To permit the local network to use the firewall as a DNS server, we need to permit DNS queries directed
to the firewall, DNS replies sent by the firewall, DNS queries sent by the firewall to servers on the Internet
and replies sent back to it. The following pair of rules does just that:

Firewall Builder Cookbook

352

Figure 14.63. Rules with DNS

The service object group object DNS can be found in the "Standard" objects tree, under Services/Groups.
This group consists of both the UDP object domain and TCP object domain. Both objects define destination
port 53 and ignore source port. Since we do not specify the source port, these objects match both queries
sent by the domain name server (source port is 53) and the resolver on the workstations on the local net
(source port is >1024). We need to use objects representing both UDP and TCP protocols because DNS
falls back to TCP if the answer for the query is too big and won't fit in the standard UDP datagram. DNS
zone transfers also use the TCP protocol.

14.2.21. Controlling Outgoing Connections from the Fire-
wall

This example shows the rule that permits only certain types of outgoing connections. To permit outgoing
web access but nothing else, we put the firewall object in Source and the corresponding service object
in Service:

Figure 14.64. HTTP-Only

Rule #1 blocking packets going from any source to any destination also blocks packet originating on the
firewall (provided option "Assume firewall is part of any" is on). The combination of these two rules
permits only outgoing HTTP connections from the firewall and nothing else.

Although we permit outgoing HTTP connections here, we should probably permit outgoing DNS queries
as well. The browser running on this machine would not be able to connect to a web site if it cannot resolve
the name via DNS. Here is the corrected policy:

Figure 14.65. HTTP and DNS

The DNS service object, which includes both the UDP and TCP versions, can be found in the "Standard"
tree under Services/Groups.

We may also want to permit protocols used for troubleshooting, such as ping. In order to permit it, we just
add ICMP Service object "ping request" to the list of services permitted by rule #0:

Figure 14.66. HTTP, DNS, and Ping

Firewall Builder Cookbook

353

Note

In Firewall Builder, a firewall object represents any machine that runs firewall software. This
is not necessarily a dedicated firewall protecting a local network, but may actually be a server
or a laptop. For example, rules permitting HTTP to the dedicated firewall machine may not be
very practical because running the web server on it would be risky, but if the firewall object
represents a web server with iptables or ipfilter running on it, such rules make perfect sense. The
rule permitting outbound HTTP access from the firewall machine explained in this example can
be used as a part of the policy protecting a laptop or a workstation.

14.2.22. Branching rules

Many firewall platforms support mechanisms by which control can be passed from one group of rules to
another, much like in programming languages control can be passed to a subroutine. The rule set that gets
control in such operation can then make final decision about the packet and accept or deny it, or it can
return control back to the rule set that was running before. Firewall Builder provides the same mechanism
using a branching action that is called "Chain" for iptables firewalls and "Anchor" for PF firewalls to reuse
the familiar names from iptables and pf, respectively.

Note

Platform-specific action names "Chain" and "Anchor" will disappear in Firewall Builder v4.0.
The name of the action that creates a branch in the rule set processing sequence will be just
"Branch" regardless of the chosen target firewall platform.

Branching rules can be used to create optimized rule sets or to improve readability or both. Consider the
example shown in the following screenshot:

Figure 14.67. A Firewall Object with Two Policy Rule Sets

Firewall fw2 has two rule sets: "Policy" and "rate_limit". I am going to demonstrate how the second rule
set can be used to rate limit packets that match different rules in the main rule set "Policy".

Note

Figure 14.52 demonstrated how to add policy rule set object to the firewall.

Let's create a rule to match ssh sessions to the firewall and instead of accepting or dropping them right
away, pass control to the rule set "rate_limit" that will accept them only if they are not opened too fast.
First, create this rule and choose action "Chain", then double-click the action and drag rule set object
"rate_limit" into the well in the action dialog as shown in the screenshot:

Firewall Builder Cookbook

354

Figure 14.68. A Rule with Action "Chain"

Now we can configure rate limiting rule in the "rate_limit" rule set. I am going to use the iptables module
"hashlimit" to configure rather sophisticated rate-limiting. When I recreate the same example for PF below,
the options will look different.

Figure 14.69. Rate limiting rule

Here is the iptables script generated by the program for these rules:

Firewall Builder Cookbook

355

Rule 0 (global)

$IPTABLES -N rate_limit
$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -j rate_limit

================ Table 'filter', rule set rate_limit

Rule rate_limit 0 (global)

$IPTABLES -A rate_limit -m state --state NEW \
 -m hashlimit --hashlimit 5/minute --hashlimit-mode srcip \
 --hashlimit-name htable_rule_0 -j ACCEPT

Those familiar with iptables will notice that Firewall Builder created user-defined chain with the name of
the second rule set ("rate_limit") and used "-j" option to pass control to it from the top-level rule.

Branching from a single rule is not very interesting. I could just use the same options with the rule #0 in
the top level Policy rule set and get the same result, except instead of the user defined chain "rate_limit"
this all would have been done in the same iptables command. However branching to a dedicated rule set
becomes more useful if I want to use the same rate limiting to control access to several servers behind the
firewall on entirely different protocols. Here is new example:

Figure 14.70. Several rules branching to the same rule set "rate_limit"

Here is how generated iptables script looks like:

================ Table 'filter', rule set Policy

Rule 0 (global)

$IPTABLES -N rate_limit
$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -j rate_limit

Rule 1 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -d 192.168.1.100 --dport 25 -j rate_limit

Rule 2 (global)

$IPTABLES -A FORWARD -p tcp -m tcp -d 192.168.1.200 --dport 80 -j rate_limit

================ Table 'filter', rule set rate_limit

Rule rate_limit 0 (global)

$IPTABLES -A rate_limit -m state --state NEW \
 -m hashlimit --hashlimit 5/minute --hashlimit-mode srcip \
 --hashlimit-name htable_rule_0 -j ACCEPT

Firewall Builder Cookbook

356

Here are three iptables rules that match different addresses and services but pass control to the same chain
"rate_limit". Now if I need to tune my rate-limiting parameters for all destinations, I can do it in one place
instead of three.

The rule #0 in the "rate_limit" rule set matches packets only if they come at the rate no more than five per
minute per source IP address. Packets that match these criteria will be accepted, but those that don't will
not match the rule. Since this rule is the last in the branch rule set, control will return to the top level and
firewall will continue examining the packet with rules below the one that passed control to "rate_limit" rule
set. Eventually it may hit the "catch all" rule and get dropped, but more complex policies may do something
else with these packets such as try different rate-limiting criteria or mark them for traffic shaping.

An action that creates a branch is available in Firewall Builder only if the target firewall platform provides
some kind of mechanism to support it. In iptables it is user-defined chains, in PF it is anchors. Unfortu-
nately, branching can not be implemented in Cisco IOS access lists and PIX. Let's try to recompile the
same rules for PF. First, we'll need to change rate limiting parameters because its implementation in PF
is different from that in iptables.

Figure 14.71. Rate-Limiting Rule for PF

I am using the same three rules in the main policy to rate-limit connections to the firewall itself and two
servers behind it. The generated PF config is split so that main policy rules are in the file "fw2-pf.conf" and
rules for the rule set "rate_limit" are in the file "fw2-pf-rate_limit.conf". When configuration with multiple
rule sets is compiled for PF, each new branch rule set has its own separate file with the name composed
from the name of the firewall object and the name of the rule set object.

File fw2-pf.conf:

Firewall Builder Cookbook

357

Tables: (1)
table <tbl.r9999.d> { 192.0.2.1 , 192.168.1.1 }

Policy compiler errors and warnings:

Rule 0 (global)

anchor rate_limit in inet proto tcp from any to <tbl.r9999.d> port 22

Rule 1 (global)

anchor rate_limit inet proto tcp from any to 192.168.1.100 port 25

Rule 2 (global)

anchor rate_limit inet proto tcp from any to 192.168.1.200 port 80

File fw2-pf-rate_limit.conf:

Tables: (0)

Policy compiler errors and warnings:

Rule rate_limit 0 (global)

pass quick inet from any to any keep state (max-src-conn 10, max-src-conn-rate 5/60)

Firewall Builder also generates a shell script to load these rules. The script is in the file with the name the
same as the name of the firewall, with extension ".fw":

Here is the code that loads rules in the file fw2-pf.fw:

$PFCTL -f ${FWDIR}/fw2-pf.conf || exit 1
$PFCTL -a rate_limit -f ${FWDIR}/fw2-pf-rate_limit.conf || exit 1

Rules from the file "fw2-pf-rate_limit.conf" are loaded into anchor "rate_limit".

14.2.23. Using branch rule set with external script that
adds rules "on the fly" to prevent ssh scanning attacks

Branch rule sets created in the Firewall Builder GUI get translated into user-defined chains (iptables) or
anchors (pf) in the generated configuration. It is not required however that you put any rules in this branch
rule set. If it is left empty, it won't make packet checks and return back to the top level rule that called it
right away. Such an empty rule set can be very useful if you populate it with rules using some external
script after firewall policy has been loaded. In the following example I use this idea to add firewall policy
rules dynamically to block SSH scanners. The goal is to build policy rules to do the following:

1. Always permit SSH from the internal network to the firewall. Our algorithm for identification of SSH
scanners is based on the log records of failed login attempts, so it is important to have a rule to permit
SSH from inside. Without this rule, if the administrator made a typo entering the password, this could
trigger the next rule for the source address they tried to connect from and block them.

Firewall Builder Cookbook

358

2. If the source IP address of the SSH client that tries to connect was identified as an SSH scanner, block
connection

3. Permit all other SSH connections from all sources.

This policy is rather permissive but it can easily be modified to suite more strict security requirements.

I start with an existing firewall policy. The rules I am going to add to block SSH scans do not depend on
other rules in the policy. First, I create a new policy rule set with name "block_ssh". This rule set is not the
"top rule set", so generated iptables rules will be placed in the chain "block_ssh". I do not add any rules
here. Rules will be added to this chain by an external script.

Figure 14.72. Creating a "block_ssh" Rule Set

Create rule #0 in the main policy to permit SSH to the firewall from internal network, then another one
where the destination the firewall itself, the service is "ssh", the direction "Inbound" and action is "Branch".
Open the action in the editor by double-clicking it, then drag the object representing rule set "block_ssh"
into the well in the action editor panel. The idea is to first permit SSH to the firewall from the internal net
(rule #0), but for attempts to connect to the firewall on the SSH port from other sources pass control to
chain "block_ssh". If that chain does not block the SSH session, the next rule #2 permits it.

Figure 14.73. Setting the "Chain" Action

Firewall Builder Cookbook

359

Here is what the iptables commands generated for rules 0-2 look like. Note that although the script creates
the chain "block_ssh", it does not put any rules in it.

================ Table 'filter', rule set Policy
Policy compiler errors and warnings:

Rule 0 (global)

$IPTABLES -A INPUT -p tcp -m tcp -s 192.168.1.0/24 \
 --dport 22 -m state --state NEW -j ACCEPT

Rule 1 (global)

$IPTABLES -N block_ssh
$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -j block_ssh

Rule 2 (global)

$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT

I am using swatch to watch the log and add iptables rules with addresses of scanners to the chain
"block_ssh". The screen shot below shows the contents of the swatch configuration file /root/.swatchrc.
This configuration makes swatch detect log lines added by SSH when an attempt is made to log in using
an invalid user account or invalid password. Swatch then runs script /root/swatch/block_ssh_scanner.sh.

cat /root/.swatchrc

watchfor /sshd\[\d+\]: Failed password for invalid user (\S+) from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $2"

watchfor /sshd\[\d+\]: Failed password for (\S+) from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $2"

watchfor /sshd\[\d+\]: Did not receive identification string from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $1"

watchfor /sshd\[\d+\]: Invalid user (\S+) from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $2"

The following script adds an iptables rule to chain "block_ssh" and also adds the address of the scanner to
the file /root/swatch/ssh_scan_addresses to avoid duplications in the future.

cat /root/swatch/block_ssh_scanner.sh
#!/bin/sh

addr=$1
test -z "$addr" && exit 1
grep $addr /root/swatch/ssh_scan_addresses && exit 0

cmd="iptables -A block_ssh -s $addr -j DROP"
echo "$cmd" >> /root/swatch/ssh_scan_addresses
$cmd

Firewall Builder Cookbook

360

Here is the command line you can use to start the swatch daemon. Add this command to the /etc/rc.d/
rc.local script to start it when you reboot your machine.

/usr/bin/swatch --daemon --tail-file=/var/log/secure --use-cpan-file-tail </dev/null &

This method of blocking SSH scan attacks is effective but might be too "sharp". It will block access from
legitimate machines outside your network as soon as you mistype your password even once. This can be
dangerous because you'll block yourself until you either restart the firewall or remove the blocked address
from iptables rules in chain "block_ssh". SSH access to the firewall from the internal network is always
permitted because of the rule #0, so this setup will not cut you off the firewall completely. Using SSH
keys for authentication instead of the password when you log in from outside is a good way to avoid this
problem.

Note

This example was intended to demonstrate how a branch rule set can be used in combination with
external script that populates rule set. There are better ways to block SSH scanners, for example
using the iptables module "recent" which solves a problem of blocking legitimate client addresses
after a user mistypes the password. Module "recent" can block an address for a limited period of
time, which should be enough for the SSH scanner to time out and go away, yet the user who
mistyped their password will be able to log in again some time later. The shell script that adds
iptables commands to the chain "block_ssh" or addresses to the module recent table can also be
improved to only add them after they appear in the SSH log a few times to avoid blocking client
addresses after single error entering password.

14.2.24. A Different Method for Preventing SSH Scanning
Attacks: Using a Custom Service Object with the ipta-
bles Module "recent"

The method described in the previous section has a problem in that it permanently blocks access from any
client when user mistypes their password several times. It is better to block access temporarily instead of
permanently. The iptables module "recent" provides a way to do just that.

In this example, I only use the basic features of the "recent" module you can find
more information about the available options for this module at the netfilter How-To
page. http://netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-3.html#ss3.16 [http://
netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-3.html#ss3.16]

To use this module, I create the following custom service object (see Section 5.3.6):

http://netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-3.html#ss3.16
http://netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-3.html#ss3.16
http://netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-3.html#ss3.16

Firewall Builder Cookbook

361

Figure 14.74. Custom Service Object Used to Define Parameters for the iptables
Module "recent"

This module matches packets that have source address that is on the list of the module and was seen within
the last 600 seconds. Now we can use this module in a rule:

Figure 14.75. Policy Rules Using the Custom Service Object "recent 10 min"

These two rules translate into the following iptables script:

Rule 0 (global)

echo "Rule 0 (global)"

$IPTABLES -N RULE_0
$IPTABLES -A INPUT -m recent --rcheck --seconds 600 -j RULE_0
$IPTABLES -A RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A RULE_0 -j DROP

Rule 1 (global)

echo "Rule 1 (global)"

$IPTABLES -A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT

Rule 0 blocks any packets that match module "recent," that is, that have source address that is on the
module's list and were seen within last 10 minutes. Rule #1 simply permits SSH to the firewall. If every-
thing goes well, no addresses should be on the module recent list, which means rule #0 does not match
any packets and SSH access to the firewall is permitted by rule #1. However if any address is placed on
the list of the module recent, rule #0 will block access to the firewall from that address for 10 min.

To place addresses of the attacking bots on the list I am using swatch just like in the previous chapter. The
configuration file /root/.swatchrc looks like this:

Firewall Builder Cookbook

362

cat /root/.swatchrc

watchfor /sshd\[\d+\]: Failed password for invalid user (\S+) from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $2"

watchfor /sshd\[\d+\]: Failed password for (\S+) from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $2"

watchfor /sshd\[\d+\]: Did not receive identification string from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $1"

watchfor /sshd\[\d+\]: Invalid user (\S+) from (\S+)/
echo bold
exec "/root/swatch/block_ssh_scanner.sh $2"

When swatch finds log entry that signals a potential SSH scan attack, it calls the script /root/swatch/
block_ssh_scanner.sh:

#!/bin/sh

addr=$1

ADDRDB="/root/swatch/ssh_scan_addresses"

test -f $ADDRDB || touch $ADDRDB

echo $addr >> $ADDRDB

take last 10 entries from the list, sort and count them, then
use addresses that appear 3 or more times. This means we'll block
clients that make 3 mistakes for a short interval of time.
#
tail -10 $ADDRDB | sort | uniq -c | awk '$1>3 { print $2;}' | while read a
do
 echo "+$a" > /proc/net/xt_recent/DEFAULT
done

This script finds addresses that tried wrong password or non-existent user accounts three or more times
and adds them to the list "DEFAULT" of the module recent. If such address tries to connect to the firewall
one more time, it will be blocked by the rule #0 in the policy. However if they try 10 minutes later, they
will be allowed to connect. This means if I mistype my password three times and get blocked, I can still
log in 10 minutes later.

Finally, to start swatch and bring this all in motion, I use the following command:

nohup /usr/bin/swatch --daemon --pid-file=$PID_FILE --tail-file=/var/log/auth.log \
 --use-cpan-file-tail < /dev/null &

Swatch should monitor log file /var/log/auth.log on Debian and Ubuntu or /var/log/secure on RedHat,
Fedora and other similar systems.

Firewall Builder Cookbook

363

14.2.25. Using an Address Table Object to Block Access
from Large Lists of IP Addresses

This section demonstrates how address blocks registered to whole countries can be blocked by the iptables
or pf firewall. Firewall Builder makes generating configuration for this simple. This recipe follows the idea
outlined in the HOWTO found on HowtoForge at http://www.howtoforge.com/blocking-ip-addresses-of-
any-country-with-iptables and in this blog: http://blogama.org/node/62. The original HOWTO only applies
to iptables but this recipe demonstrates how the same objects in Firewall Builder can be used to generate
both iptables and PF configurations.

The blocking method described in the original HOWTO and in this recipe becomes possible because of
the service provided by http://blogama.org where they make files with lists of IP addresses registered to
different countries available for download using URLs such as

http://blogama.org/country_query.php?country=CCODE1,CCODE2,...

Here CCODE1, CCODE2 and so on are ISO 3166 country codes.

We start with creating Address Table object (See Section 5.2.14) with name "blocklist":

Figure 14.76. Address Table Object Using the File "/tmp/iptables-blocklist.txt"

Since the object is configured as "run-time", the Firewall Builder policy compiler generates configuration
in a such way that addresses will be read at the time when policy is activated on the firewall machine.
This can be achieved in different ways, for example for the iptables compiler generates shell script frag-
ment that reads addresses, or if the firewall supports iptables module "ipset", generated script will use it
(Section 5.2.14.1). For PF, the generated configuration uses table which is loaded at run time using "file"
option. You do not have to recompile policy if you use "Run time" Address Table object every time the
list of IP addresses is updated. If generated script uses the ipset module with iptables or tables with PF,
you only need to run the command on the firewall to reload addresses in the tables maintained by ipset or
PF in memory. If the generated firewall uses a shell script that reads the file, as is the case with iptables
firewall that does not have the module ipset, then the same script needs to be re-run to pick up changes.

Now we can use this object in the policy rules. To follow original HOWTO closely, I am added rules
to control packets coming from the addresses in the list to the firewall, as well as packets going from
the firewall to addresses in the list. My goal in this recipe was to reproduce rules found in the original
HOWTO as close as possible.

http://www.howtoforge.com/blocking-ip-addresses-of-any-country-with-iptables
http://www.howtoforge.com/blocking-ip-addresses-of-any-country-with-iptables
http://blogama.org/node/62

Firewall Builder Cookbook

364

Figure 14.77. Policy Rules Using an Address Table Object

In the rule #1 address table object is in source, the firewall object is in destination, the direction is "in-
bound", and the action is "deny". This rule matches and drops packets coming from the addresses in the
list to the firewall. The second rule reverses source and destination and makes direction "outbound" to
match packets sent by the firewall to addresses in the list.

Here is how the generated commands look like for the iptables firewall without module "ipset":

Rule 1 (global)

echo "Rule 1 (global)"

grep -Ev '^#|^;|^\s*$' /tmp/iptables-blocklist.txt | while read L ; do
 set $L; at_blocklist=$1; $IPTABLES -A INPUT -i + -s $at_blocklist -j DROP
done

Rule 2 (global)

echo "Rule 2 (global)"

grep -Ev '^#|^;|^\s*$' /tmp/iptables-blocklist.txt | while read L ; do
 set $L; at_blocklist=$1; $IPTABLES -A OUTPUT -o + -d $at_blocklist -j DROP
done

A few comments. The script generated by Firewall Builder assumes comments in the file that holds IP
addresses can start with the characters '#', ';' or '*'. It also expects the file to hold one address per line and
anything after the address on any line is assumed to be a comment too. This format is slightly expanded
compared to the format of files produced by blogama.org which makes script commands slightly more
complex. It is also possible that generated script can be somewhat optimized.

If the firewall supports the module ipset (See Section 5.2.14.1 for more details about that), the generated
iptables commands look like this:

Rule 0 (global)

echo "Rule 0 (global)"

$IPTABLES -A INPUT -m set --set blocklist src -j DROP

Rule 1 (global)

echo "Rule 1 (global)"

$IPTABLES -A OUTPUT -m set --set blocklist dst -j DROP

14.2.25.1. Generating Configuration for a PF Firewall Using the
Same Firewall Builder Objects

Here is how exactly the same set of objects can be used to generate configuration for a PF firewall doing
the same thing. First, we need to change firewall platform and host OS in the firewall object:

Firewall Builder Cookbook

365

Figure 14.78. Switching the Firewall to the PF Platform

Now save the file and recompile configuration. Here is the result for PF (only relevant fragments of the
generated .conf file are shown):

table <blocklist> persist file "/tmp/iptables-blocklist.txt"
table <tbl.r9999.d> { 192.0.2.1 , 172.16.22.1 , 192.168.2.1 }

Rule 1 (global)

block in quick inet from <blocklist> to <tbl.r9999.d> label "RULE 1 -- DROP "

Rule 2 (global)

block out quick inet from <tbl.r9999.d> to <blocklist> label "RULE 2 -- DROP "

The compiler created the table <blocklist> and associated it with the file "/tmp/iptables-blocklist.txt".
(Pardon the name of the file, it carried over from the iptables example). The table <tbl.r9999.d> was created
because compiler needed to put several ip addresses that belong to the firewall in this configuration in a
single rule. In the end, this PF configuration performs the same operation as iptables configuration shown
above.

Finally, to make this work and do something useful, we need to download the addresses of the countries we
want to block and put them in the file "/tmp/iptables-blocklist.txt". As the author of the original HOWTO
suggests in http://blogama.org/node/62 this can be done with wget. A simple script like this does the job:

COUNTRIES="AK,AR"
wget -c --output-document=/tmp/iptables-blocklist.txt \
 http://blogama.org/country_query.php?country=$COUNTRIES

This command should probably be put in a script which should run from cron once a month or so. The
same script should also reload ip addresses in PF table or ipset list after it updates the address table file
to make sure firewall picks up the change. To reload IP addresses from the file on the iptables with ipset
module, run the script with command line option "reload_address_table":

/etc/fw/firewall.sh reload_address_table blocklist /etc/fw/blocklist_file.txt

http://blogama.org/node/62

Firewall Builder Cookbook

366

To reload IP addresses on the PF firewall, use the command

pfctl -t blockist

If the firewall you use runs iptables and does not support module ipset, you just need to re-run the firewall
script to update the rules with new ip addresses.

14.3. Examples of NAT Rules

14.3.1. "1-1" NAT
The examples above were "hiding" multiple internal addresses behind just one external address. We had a
whole network (potentially 254 hosts) use the same external address to access the Internet. Sometimes it is
necessary to do translation where each internal host has a dedicated corresponding address on the outside.
This is often called "1-1" NAT. Here is how this is done in Firewall Builder when a whole network of the
same dimension is available on the outside:

Figure 14.79.

Network object ext net defines network "192.0.2.0/24", which is the same size as the internal network (this
is a hypothetical example). Here is iptables command produced for this rule:

Rule 0 (NAT)

$IPTABLES -t nat -A POSTROUTING -s 172.16.22.0/24 -j NETMAP --to 192.0.2.0/24

NETMAP target maps a whole network of addresses onto another network of addresses.

In PF the following "nat" command is used:

Rule 0 (NAT)

nat proto {tcp udp icmp} from 172.16.22.0/24 to any -> 192.0.2.0/24

For PIX, Firewall Builder generates a "global" address pool the size of the 192.0.2.0/24 network:

! Rule 0 (NAT)
!
global (outside) 1 192.0.2.0 netmask 255.255.255.0
access-list id54756X30286.0 permit ip 172.16.22.0 255.255.255.0 any
nat (inside) 1 access-list id54756X30286.0 tcp 0 0

Firewall Builder Cookbook

367

14.3.2. "No NAT" Rules
Sometimes a firewall that is doing NAT should skip translation for some pairs of source and destination
addresses. One example when this is necessary is when you have DMZ segment that uses private addresses,
so you need to use NAT to provide access to servers in DMZ from outside, but no NAT is needed for
access to the same servers from internal network. Here is how it looks:

Figure 14.80.

Firewall object fw-1 has 4 interfaces:

Table 14.1.

Interface Network zone Address

eth0 external interface 192.0.2.1/24

eth1 internal interface 172.16.22.1/24

eth2 DMZ 192.168.2.1/24

lo loopback 127.0.0.1

The internal interface eth1 also has IPv6 address but it is not used in this example.

Here is a NAT rule to permit access to the DMZ network (192.168.2.10) from internal network directly
without NAT.

Figure 14.81.

Here is the script generated for iptables:

Rule 0 (NAT)

$IPTABLES -t nat -A POSTROUTING -s 172.16.22.0/24 -d 192.168.2.0/24 -j ACCEPT
$IPTABLES -t nat -A PREROUTING -s 172.16.22.0/24 -d 192.168.2.0/24 -j ACCEPT

For PF we get this:

Firewall Builder Cookbook

368

Rule 0 (NAT)

no nat proto {tcp udp icmp} from 172.16.22.0/24 to 192.168.2.0/24
no rdr proto {tcp udp icmp} from 172.16.22.0/24 to 192.168.2.0/24

For PIX, Firewall Builder generates "nat 0" rule:

! Rule 0 (NAT)
!
access-list nat0.inside permit ip 172.16.22.0 255.255.255.0 192.168.2.0 255.255.255.0
nat (inside) 0 access-list nat0.inside
!

14.3.3. Redirection rules
Another useful class of destination translation rule is the one that does redirection. A rule like this makes
the firewall send matching packets to itself, usually on a different port. This rule can be used to set up a
transparent proxy. To set up a redirection rule in Firewall Builder, place the firewall object or one of its
interfaces in Translated Destination. Here is an example:

Figure 14.82.

And here is what is generated for iptables:

Rule 0 (NAT)

$IPTABLES -t nat -A PREROUTING -p tcp -m tcp -s 172.16.22.0/24 \
 --dport 80 -j REDIRECT --to-ports 3128

Iptables uses special target REDIRECT for this kind of redirection.

For PF we get this:

Rule 0 (NAT)

rdr proto tcp from 172.16.22.0/24 to any port 80 -> 127.0.0.1 port 3128

14.3.4. Destination NAT Onto the Same Network
This situation is described in the iptables HOWTO http://www.netfilter.org/documentation/HOW-
TO//NAT-HOWTO.html [http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO.html]

http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO.html
http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO.html
http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO.html

Firewall Builder Cookbook

369

This problem occurs when machines on an internal LAN try to access a server (let's say a web server) that
is actually located on the same LAN and NAT'ed through the firewall for external access. If internal users
access it by its external NATted address, then they send their TCP packets through the firewall, which
translates them and sends them to the server on LAN. The server, however, replies back to the clients
directly because they are on the same network. Since the reply has server's real address in the source,
clients do not recognize it and the connection cannot be established.

To resolve this problem you need to make a NAT rule to replace the source address of the packet with the
address of firewall's internal interface. This should happen in addition to the translation of the destination
address described in the previous chapters. If the source address of the packet that hits the server belongs
to the firewall, the server replies to it; the firewall then translates again before sending the packet back to
the client. The client sees the address it expects and the connection gets established.

Fortunately, Firewall Builder supports this kind of a dual-translation NAT rule. Rule #0 in Figure 14.83
does just that: it translates both the source and destination addresses of the packet.

The firewall's eth0 interface is internal and is connected to the same subnet the web server belongs to. For
any packet headed for any address of the firewall, TCP port 80, the rule #0 substitutes its source address
with the address of interface eth0 and its destination address with the address of the web server. The packet
reaches the server because its destination address has been changed. This also makes the server reply back
to the firewall, which in turn provides reverse translation before it sends these reply packets back to client
hosts.

Figure 14.83. DNAT Back to the Same LAN

Rule in Figure 14.83 replaces source address of all packets regardless of their origin. Because of this, the
web server sees all connections as if they were coming from the firewall rather than from the real clients.
If having real client addresses in the web server log is necessary, the scope of this rule can be narrowed
by placing object representing internal network in the Original Src. Since the source address needs to be
translated only in the connections coming from the internal net, dual translation rule should only be needed
for these connections. Connections coming from the Internet can be translated as usual. A combination
of rules that implement this configuration is shown in Figure 14.84. Rule #0 does dual translation, while
rule #1 does a simple destination address translation. The dual translation rule must be the first in the pair
because if it weren't, another one would match connections coming from the internal net and translate
destination address without changing the source address.

Figure 14.84. Using Dual Translation Only for Connections Coming from the
Internal Network

Note

Not all firewall platforms provide the features Firewall Builder needs to implement dual transla-
tion rules. Currently dual translation rules are supported only with iptables and OpenBSD PF.

Firewall Builder Cookbook

370

14.3.5. "Double" NAT (Source and Destination Transla-
tion)

There are situations where both the source and destination IP addresses of a packet need to be NATted.
The diagram below shows just such a scenario where an internal server needs to be accessed remotely
from the outside using the Remote Desktop Protocol (RDP).

Figure 14.85. Network Configuration

What complicates this scenario is the fact that the default route for the ms-server-1 server directs traffic to
rtr-1 instead of fw-2. If a remote user attempts to connect from the Internet to ms-server-1, and there is a
destination NAT configured on the fw-2 firewall to forward traffic from a specific port on its outside eth0
interface to port 3389 (RDP) on ms-server-1, the ms-server-1 server will send the RDP response traffic to
rtr-1 because of the default route and the remote desktop connection will never be established.

One way to solve this problem is to configure fw-2 with "double" NAT which results in both the original
source and original destination IP addresses being modified. By modifying the source IP to be fw-2's
internal eth1 address, the return packets from the ms-server-1 server for the RDP traffic will correctly be
sent to fw-2 and the remote desktop connection will work.

This recipe assumes that in addition to the fw-2 firewall object the following objects and attributes have
already been configured in Firewall Builder.

Firewall Builder Cookbook

371

Table 14.2. Firewall Builder Objects

Object Name Object Type Object Value

ms-server-1 Address 192.168.1.25

RDP-OUTSIDE-4080 TCP Service 4080

The NAT rule is created using these objects and objects from the Standard Library. After the double NAT
rule is configured it should like the figure below.

Figure 14.86. Configured NAT Rule

Note

The Original Src is set to Any, this will match the IP address of any remote PC on the Internet. To
connect the ms-server-1 internal server using RDP, the remote PC will connect to fw-2's outside
interface on port 4080.

Here is the Firewall Builder-generated compiler output for configuring this rule on an iptables firewall:

$IPTABLES -t nat -A PREROUTING -p tcp -m tcp -d 192.0.2.2 --dport 4080 -j DNAT \
 --to-destination 192.168.1.25:3389
$IPTABLES -t nat -A POSTROUTING -o eth1 -p tcp -m tcp -d 192.168.1.25 \
 --dport 3389 -j SNAT --to-source 192.168.1.3

After the NAT rule is installed on the firewall the traffic that is destined to port 4080 on the outside interface
of fw-2 will be translated as shown in the diagram below.

Firewall Builder Cookbook

372

Figure 14.87. Configured NAT Rule

Note

The Source ports in the example above are random and generated by the system originating the
TCP connection.

14.4. Examples of cluster configurations
This chapter is dedicated to high availability (HA) or cluster configurations that involve two or more
firewalls sharing the same set of virtual addresses. Examples are written assuming that the reader will
probably jump straight to the one that is most close to the configuration they have, instead of reading
all of them in order, so many procedures and explanations are repeated in each example. Nevertheless,
sometimes examples refer to each other and other chapters in this Guide to reduce the amount of redundant
material.

14.4.1. Web server cluster running Linux or OpenBSD

This example demonstrates how Firewall Builder can be used to generate firewall configuration for a
clustered web server with multiple virtual IP addresses. The firewall is running on each web server in the
cluster. This example assumes the cluster is built with heartbeat using "old" style configuration files, but
which high availability software is used to build the cluster is not really essential. I start with the setup that
consists of two identical servers running Linux but in the end of the chapter I am going to demonstrate
how this configuration can be converted to OpenBSD with CARP.

In this example I am working with redundant web server configuration where each machine has its own IP
address, plus three additional virtual addresses that can be used for virtual hosts. Firewall Builder generates
iptables script for both machines. Configuration of the HA agent should be handled either manually or
using specialized configuration system such as pacemaker. When I convert the same setup from Linux to
OpenBSD, I am going to show how fwbuilder can generate not only firewall configuration, but also the
script that manages CARP and pfsync interfaces.

Firewall Builder Cookbook

373

Figure 14.88. HA Configuration Using Two Web Servers

Note

IPv6 addresses are not used in this recipe. Some interface objects in the screenshots have ipv6
addresses because firewall objects were "discovered" using snmp which finds IPv6 addresses.
You can disregard these addresses while working with examples in this chapter.

14.4.1.1. Setting Up the Heartbeat

Note

I am going to use an "old" heartbeat configuration files in this example just to demonstrate how the
configuration looks like. You should probably use modern Cluster Resource Manager software
such as Pacemaker [http://www.clusterlabs.org/wiki/Main_Page].

As shown in Figure 14.88, machines linux-test-1 and linux-test-2 run heartbeat daemon (Linux-HA home
page [http://www.linux-ha.org/]) to create virtual IP addresses. Heartbeat adds virtual IP address to the
same interface eth0. One of the daemons becomes master and takes ownership of the virtual address by
adding it to the interface with the label "eth0:0" or "eth0:1".

Note

Section 8.1 explains that "eth0:0" is not an interface and should not be used as the name of the
interface object in Firewall Builder configuration. See Section 8.1 for a more detailed explanation.

In this example I am using heartbeat in multicast mode where it sends UDP datagram to the multicast
address 225.0.0.1 every second or so to declare that it is up and running and owns the address.

If you are interested in more detailed explanation of the "old" style heartbeat configuration files used to
set up example similar to this one, see Section 14.4.3.

Once heartbeat daemon is configured and started on both servers, their IP address configuration looks like
shown in Figure 14.89 and Figure 14.90. Virtual addresses were highlighted to illustrate that the heartbeat
is running in active/active configuration, that is, two virtual addresses are active on one machine and the
third is active on another. If either machine dies, all three virtual addresses will move over to the one that
is left working.

http://www.clusterlabs.org/wiki/Main_Page
http://www.clusterlabs.org/wiki/Main_Page
http://www.linux-ha.org/
http://www.linux-ha.org/
http://www.linux-ha.org/

Firewall Builder Cookbook

374

Figure 14.89. IP Addresses of the Web Server linux-test-1

root@linux-test-1:/etc/ha.d# ip addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:1e:dc:aa brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet 10.3.14.150/24 brd 10.3.14.255 scope global secondary eth0:0
 inet 10.3.14.151/24 brd 10.3.14.255 scope global secondary eth0:1
 inet6 fe80::20c:29ff:fe1e:dcaa/64 scope link
 valid_lft forever preferred_lft forever

Figure 14.90. IP Addresses of the Web Server linux-test-2

root@linux-test-2:/etc/ha.d# ip addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:fc:67:8c brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.109/24 brd 10.3.14.255 scope global eth0
 inet 10.3.14.152/24 brd 10.3.14.255 scope global secondary eth0:0
 inet6 fe80::20c:29ff:fefc:678c/64 scope link
 valid_lft forever preferred_lft forever

14.4.1.2. Creating Firewall and Cluster Objects

Here I present an abbreviated explanation of the process of creating firewall and cluster objects. More
detailed step-by-step guides are available in Section 5.2.2 and Section 5.2.3

As usual, to create a firewall object I use main menu "Object/New object" which opens a menu of object
types:

Figure 14.91. Creating the First Member Firewall Object

After I choose the type "Firewall", a wizard used to create new firewall object opens:

Firewall Builder Cookbook

375

Figure 14.92. Choosing the Name, Platform, and Host OS for the Firewall Object

To make things simpler, I am going to use preconfigured template object "web server" that comes with the
package. This object represents a machine with one interface "eth0" and comes with some basic firewall
policy that can be useful as a starting point for the firewall configuration for a web server.

Figure 14.93. Choosing a Template Firewall Object

The template firewall object has IP address that does not match the address chosen for this example. The
next page of the wizard allows me to change the address and add two more:

Firewall Builder Cookbook

376

Figure 14.94. Changing the IP Address of the Firewall Object

Once I am done changing IP addresses and clicking "Finish", the new firewall object is created and is added
to the library of objects that was opened at the moment. In this example this library is called "Cookbook2". I
"floated" the object tree panel to make the screenshot more compact. You can see the new firewall object in
the tree, its interfaces and IP addresses, as well as preconfigured policy rule set on screenshot Figure 14.95:

Firewall Builder Cookbook

377

Figure 14.95. Firewall Object Created from the Template

The member firewall object's interface "eth0" has only one IP address which is its own, in our example
10.3.14.108. Virtual addresses managed by heartbeat will be added to the cluster object later.

Next, I create the second member firewall linux-test-2 with its own ip address:

Firewall Builder Cookbook

378

Figure 14.96. Two Member Firewall Objects

Because our firewall objects represent web servers which should never have to forward packets, we should
turn ip forwarding off. To do this, double-click the firewall object in the tree to open it in the editor, then
click "Host OS settings" button and turn IP forwarding off as shown in Figure 14.97. Turning ip forwarding
off in this dialog has several consequences: generated firewall script will actually turn it off on the server
and Firewall Builder policy compiler will not generate any rules in the FORWARD chain.

Figure 14.97. Turn Off IP Forwarding

Now that I have both firewall objects, I can create cluster object that will represent my HA pair. To do
this, I select both firewall objects in the tree by clicking on them while holding Ctrl key, then right-click
to open context menu and choose the item "New cluster from selected firewalls":

Firewall Builder Cookbook

379

Figure 14.98. Creatinga Cluster Object from Two Member Firewalls

This opens a wizard that will walk you through the process of creating new cluster object. The wizard
was opened using "New cluster from selected firewalls" menu, because of that there are only two firewall
objects in the list. If I used main menu "Object/New Object" and then "New Cluster", I would see all
firewalls defined in my data file in the list which can be quite long.

Figure 14.99. Choosing the Name for the New Cluster Object

Note

A word about the "Master" column. Not all failover protocols require one of the member firewalls
to be designated as "master". Most protocols used on Linux don't, so you can disregard this setting
on the first page of the wizard. It is needed for other platforms, such as PIX. In this sense setting
"master" on the first page of the wizard is not optimal. We will rectify this in the future versions
of Firewall Builder.

Firewall Builder Cookbook

380

Figure 14.100. Choosing Interfaces of the Member Firewalls

This page of the wizard allows me to establish correspondence between interfaces of the member firewalls
create cluster interface objects that will represent them. Cluster interface object should have the same name
as corresponding member firewall interfaces. The program tries to guess what interfaces of the member
firewalls can be used for the cluster and in a simple configuration like the one I am working with, guesses
right.

On the next page of the wizard I can choose failover protocol used by the cluster on each interface (in
principle, I can run different protocols on different interfaces) and virtual IP addresses.

Firewall Builder Cookbook

381

Figure 14.101. Choosing IP addresses for the interfaces of the cluster

Next page of the wizard is particularly interesting. Here I can choose which member firewall's policy to
use for the cluster. This feature is designed mostly for those who convert from the old manually maintained
configuration of redundant firewalls to the new cluster object and want to reuse policy rules that used to
belong to one of the member firewalls.

Figure 14.102. Cluster will inherit rules of one of the member firewalls

When new cluster object inherits policy and other rule sets of one of the members, the program copies
rules from the designated member to the cluster, then it creates copies of all member firewalls, clears their
rule sets and sets the cluster up to use these copies as members. It keeps old member firewall objects in
the file, but they are marked as inactive and renamed. These objects are kept as a backup in case you may
want to check their configuration or copy rules. New cluster object is shown in Figure 14.103:

Firewall Builder Cookbook

382

Figure 14.103. New cluster object

Each cluster interface has child "Failover group" object with the name "firewall:eth0:members" or similar.
This is where you configure associated member firewall interfaces. Double click this object in the tree and
then click "Manage Members" button in the dialog. Select interfaces of the member firewalls in the panel
on the left hand side and click arrow button to add them to the list on the right. When you create cluster
object using the wizard, the Failover Group objects are created automatically.

Firewall Builder Cookbook

383

Figure 14.104. Failover group object

Failover Group object not only ties interfaces of the member firewalls together, it is also the place where
you configure failover protocol and its parameters. I am using heartbeat in this example and failover group
object "web_server_cluster:eth0:members" is configured with this protocol as shown in Figure 14.104.
To configure parameters of the protocol, click "Edit protocol parameters" button. This opens dialog Fig-
ure 14.105:

Figure 14.105. Parameters of heartbeat protocol

These parameters are used to generate policy rules that permit packets of the protocol.

Firewall Builder Cookbook

384

14.4.1.3. Building rules for the cluster

Now that all objects are ready and heartbeat is configured on the machines, we can move on and build
some firewall rules. Since this is a cluster configuration, all rules go into the rule set objects that belong
to the cluster rather than its member firewalls.

Because all policy and NAT rules are entered in the rule set objects of the cluster, all member firewalls
end up running firewall configuration that implement the same rules. The difference is that whenever you
use cluster object or one of its interfaces in a rule, the program replaces it with actual IP addresses of the
member firewall it compiles for and virtual addresses that belong to the cluster. Each member firewall gets
slightly different script, the difference is in the part that matches addresses of the member: script on each
one matches its own addresses. If you wish to build a rule to match addresses of both members, just put
corresponding firewall objects in the rule.

Note

You can override this algorithm and make the program generate different rules for each member
if you wish. See Section 8.4.

Rules that we've got from the template object are shown in Figure 14.106:

Figure 14.106. Overview of the policy rules and compiled output for rule #0

• Rule #0: anti-spoofing rule. This is the only rule in this simple setup that generates different iptables
commands for two member firewalls. Fwbuilder optimizes other rules using INPUT and OUTPUT

Firewall Builder Cookbook

385

chains as appropriate so they look identical on both firewalls. The bottom panel visible in Figure 14.106
shows generated iptables script for the rule #0. To get that, select the rule in the rule set, click right
mouse button and use menu item "Compile", or use keyboard shortcut "X".

• Rule #1: permits everything on loopback. This rule is configured as "stateless" to simplify generated
iptables code. The output looks like this (commands for linux-test-2 firewall look the same):

linux-test-1 / Policy / rule 1
$IPTABLES -A INPUT -i lo -j ACCEPT
$IPTABLES -A OUTPUT -o lo -j ACCEPT

• Rule #2: permits access to the web server on limited set of protocols.

linux-test-1 / Policy / rule 2
$IPTABLES -A INPUT -p icmp -m icmp --icmp-type 11/0 -m state --state NEW -j ACCEPT
$IPTABLES -A INPUT -p icmp -m icmp --icmp-type 11/1 -m state --state NEW -j ACCEPT
$IPTABLES -A INPUT -p icmp -m icmp --icmp-type 0/0 -m state --state NEW -j ACCEPT
$IPTABLES -A INPUT -p icmp -m icmp --icmp-type 3 -m state --state NEW -j ACCEPT
$IPTABLES -A INPUT -p tcp -m tcp -m multiport --dports 80,22 -m state --state NEW -j ACCEPT

• Rule #3: this rule makes it possible for the web server to send DNS queries:

linux-test-1 / Policy / rule 3
server needs DNS to back-resolve clients IPs.
Even if it does not log host names during its
normal operations, statistics scripts such as
webalizer need it for reporting.
$IPTABLES -A OUTPUT -p tcp -m tcp --dport 53 -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p udp -m udp --dport 53 -m state --state NEW -j ACCEPT

• rule #4: this rule permits the server to send email:

linux-test-1 / Policy / rule 4
this rule allows the server to send
statistics and reports via email. Disable
this rule if you do not need it.
$IPTABLES -A OUTPUT -p tcp -m tcp --dport 25 -m state --state NEW -j ACCEPT

• Rule #5: reject auth (ident) protocol. This is optional and depends on your MTA configuration:

linux-test-1 / Policy / rule 5
this rejects auth (ident) queries that remote
mail relays may send to this server when it
tries to send email out.
$IPTABLES -A INPUT -p tcp -m tcp --dport 113 -j REJECT

• Rule #6: "Catch all" rule that disables everything that was not explicitly enabled by rules above and logs:

Firewall Builder Cookbook

386

linux-test-1 / Policy / rule 6
$IPTABLES -N RULE_6
$IPTABLES -A INPUT -j RULE_6
$IPTABLES -A RULE_6 -j LOG --log-level info --log-prefix "RULE 6 -- DENY "
$IPTABLES -A RULE_6 -j DROP

You should modify the rules to suit your security policy, of course.

Once you are happy with the rules, you can try to compile the whole script and deploy it to both member
firewalls. To do this, I am going to use "Compile this" toolbar button located right above the rules as
shown in Figure 14.107:

Figure 14.107. "Compile this" toolbar button

This opens standard "compile" dialog but it only shows the cluster and its two member firewalls. I actually
have many other firewall and cluster objects in my test data file, but since I started compile process using
"compile this" button, only those that are relevant to the cluster configuration I am working with at the
moment are shown.

Figure 14.108. Compiling cluster configuration

Clicking "Next" on the first page of the dialog starts the compiler. It processes both member firewalls,
one after another, and prints its progress output in the window on the next page of the dialog. Errors and
warnings, if any, appear there as well.

Firewall Builder Cookbook

387

Figure 14.109. Compiling process progress window

Tip

If compiler generates any errors or warnings, they are highlighted in the output using different
colors. Errors appear red and warnings appear blue. The text lines of errors are warnings are
clickable. Clicking on one automatically makes the main window switch to the firewall, rule set
and rule that caused the message.

If you inspect the output of the compiler, you'll notice that it processed 11 rules, while the main window
shows only 7. To find out what are these additional 4 rules, we are going to look inside the generated
script. There are two scripts, actually, one for each member firewall. Their names are the same as names
of the member firewall objects, "linux-test-1" and "linux-test-2", with extension .fw. Other chapters of the
Users Guide discuss various parts of the generated script, here we are going to look at the automatically
added rules. Here is a fragment of the script linux-test-1.fw, specifically the beginning of the part that
defines iptables rules:

Firewall Builder Cookbook

388

================ Table 'filter', rule set Policy

Rule -4 heartbeat (automatic)

echo "Rule -4 heartbeat (automatic)"

$IPTABLES -A OUTPUT -o lo -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -3 heartbeat (automatic)

echo "Rule -3 heartbeat (automatic)"

$IPTABLES -A INPUT -i lo -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -2 heartbeat (automatic)

echo "Rule -2 heartbeat (automatic)"

$IPTABLES -A OUTPUT -o eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -1 heartbeat (automatic)

echo "Rule -1 heartbeat (automatic)"

$IPTABLES -A INPUT -i eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule 0 (eth0)

echo "Rule 0 (eth0)"

$IPTABLES -N In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.152 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.151 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.150 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.108 -j In_RULE_0
$IPTABLES -A In_RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A In_RULE_0 -j DROP

Rules with negative numbers were added by the program automatically to permit packets of the heartbeat
protocol. Rules added to interface "eth0" look right, they are in the right chains INPUT and OUTPUT and
match multicast group 224.0.10.100 and port 694 which were configured in the protocol settings dialog
Figure 14.105. The program also added the same rules to the loopback interface which we probably do not
need. This is because the wizard that creates new cluster object treats all interfaces equally and since it has
found two interfaces in each member firewall, "eth0" and "lo", it set up failover groups on both. In other
words, the program assumed that I want to run heartbeat on all interfaces. I could have fixed this right in
the wizard when I was creating new cluster object. To do that, I would have to switch to the tab "lo" in
Figure 14.101 page of the wizard and set "Protocol" to "None" for the interface "lo". However, I did not
do it then, so I need to fix it now, when cluster object and its interfaces have already been created.

To fix this, I find interface "lo" of the cluster and failover group object "web_server_cluster:lo:members"
located right under it in the tree:

Firewall Builder Cookbook

389

Figure 14.110. Failover group that was added to loopback interface

Then I double click on the failover group "web_server_cluster:lo:members" in the tree to open it in the
editor and switch the type from "heartbeat" to "None". Once this is done, I recompile the firewall again
and inspect generated script:

================ Table 'filter', rule set Policy

Rule -2 heartbeat (automatic)

echo "Rule -2 heartbeat (automatic)"

$IPTABLES -A OUTPUT -o eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -1 heartbeat (automatic)

echo "Rule -1 heartbeat (automatic)"

$IPTABLES -A INPUT -i eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule 0 (eth0)

echo "Rule 0 (eth0)"

$IPTABLES -N In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.152 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.151 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.150 -j In_RULE_0
$IPTABLES -A INPUT -i eth0 -s 10.3.14.108 -j In_RULE_0
$IPTABLES -A In_RULE_0 -j LOG --log-level info --log-prefix "RULE 0 -- DENY "
$IPTABLES -A In_RULE_0 -j DROP

The rules attached to loopback are gone.

Last change I am going to do before I upload generated script to my firewalls is switch to iptables-restore
format in the generated script. This offers many advantages over entering iptables commands one by one,
the most important is that iptables-restore policy update is atomic. If it encounters an error, it aborts without
changing running firewall policy. Also the update happens much faster and the firewall does not run in
the undefined state with only part of its policy loaded. To switch, find firewall object in the tree, double
click it to open it in the editor and click "Firewall Settings" button. Navigate to the tab "Script" and turn on
checkbox "Use iptables-restore to activate policy". Do it in both member firewall objects, then recompile
again. Generated script now looks like this (this is only relevant part of the script):

Firewall Builder Cookbook

390

(
echo '*filter'
================ Table 'filter', automatic rules
echo :INPUT DROP [0:0]
echo :FORWARD DROP [0:0]
echo :OUTPUT DROP [0:0]
accept established sessions
echo "-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT "
echo "-A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT "
echo "-A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT "
================ Table 'filter', rule set Policy

Rule -2 heartbeat (automatic)
echo "-A OUTPUT -o eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT "

Rule -1 heartbeat (automatic)
echo "-A INPUT -i eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT "

Rule 0 (eth0)
echo ":In_RULE_0 - [0:0]"
echo "-A INPUT -i eth0 -s 10.3.14.152 -j In_RULE_0 "
echo "-A INPUT -i eth0 -s 10.3.14.151 -j In_RULE_0 "
echo "-A INPUT -i eth0 -s 10.3.14.150 -j In_RULE_0 "
echo "-A INPUT -i eth0 -s 10.3.14.108 -j In_RULE_0 "
echo "-A In_RULE_0 -j LOG --log-level info --log-prefix \"RULE 0 -- DENY \""
echo "-A In_RULE_0 -j DROP "

 more rules here

Rule 6 (global)
echo ":RULE_6 - [0:0]"
echo "-A INPUT -j RULE_6 "
echo "-A RULE_6 -j LOG --log-level info --log-prefix \"RULE 6 -- DENY \""
echo "-A RULE_6 -j DROP "
#
echo COMMIT
) | $IPTABLES_RESTORE; IPTABLES_RESTORE_RES=$?
test $IPTABLES_RESTORE_RES != 0 && run_epilog_and_exit $IPTABLES_RESTORE_RES

Note

In addition to rules for the failover protocol, Firewall Builder can automatically add rules to
permit packets used by the state synchronization protocol. In case of iptables this is conntrackd.
Protocol parameters are configured in the "State Sync Group" object that is located in the tree
immediately under the cluster.

14.4.1.4. Installing cluster configuration using built-in policy in-
staller

More details on the installer and explanation of its options can be found in Chapter 10.

To upload generated script to both firewalls and activate it, use toolbar button "Install" that is located next
to the button "Compile". It also opens wizard-like dialog that lists the cluster and member firewalls and
provides checkboxes that allow you to choose which firewall you want to install on (both by default).

Firewall Builder Cookbook

391

Figure 14.111. Policy installer parameters

Once you choose which firewalls you want to install the policy on and click Next, you are presented with
policy installer dialog Figure 14.111 where you need to enter authentication credential and some other
parameters that control installation process.

Policy installer shows its progress in the dialog that looks like this:

Figure 14.112. Policy installer progress

Firewall Builder Cookbook

392

Installer copies the script to the firewall using scp (pscp.exe on Windows), then runs it there. If this is the
first time you connect to the firewall using ssh, installer recognizes ssh warning about unknown host key
and opens another pop-up dialog where it shows the key and asks administrator to verify it. If there were
no errors during policy install, corresponding status is declared "success" in the left hand side column and
installer tries to do the same for the next member firewall.

14.4.1.5. Converting configuration to OpenBSD and PF

Lets see how much effort it is going to take to convert this configuration to entirely different firewall
platform - PF on OpenBSD. There are different ways to do this. I could make a copy of each member
firewall (linux-test-1 and linux-test-2), set platform and host OS in the copy to PF and OpenBSD and then
create new cluster object. This would be a sensible way because it preserves old objects which helps to
roll back in case something does not work out. However, to make the explanation shorter, I am going to
make the changes in place by modifying existing objects.

I start with member firewalls. Open each one in the editor and change its name, platform and host OS as
shown in Figure 14.113 for the first member:

Figure 14.113. Converting member firewall to PF/OpenBSD

Firewall Builder Cookbook

393

Set version of PF to match version of your OpenBSD machine. Do the same change to the second member
firewall, then check failover group of interface "eth0" of the cluster object:

Figure 14.114. Failover group indicates that the cluster configuration does not
match members

Failover group declares status of both members "Invalid", this is because the platform and host OS of
members do not match configuration of the cluster object anymore. They should match exactly, so we
have to reconfigure the cluster object to platform "PF" and host OS "OpenBSD" as well. This should fix
the status of both members in the failover group dialog.

To switch to OpenBSD from Linux we need to change failover protocol from heartbeat to CARP as well.
The protocol is configured in the failover group object. List of available protocols depends on the firewall
platform chosen in the parent cluster object. While cluster was set up as "iptables", possible choices of
failover protocols were "heartbeat", "VRRP", "OpenAIS" and "None". "CARP" was not in the list because
it is not available on Linux. After the cluster is switched to "PF", the list consists only of "CARP" and
"None" as shown in Figure 14.115:

Figure 14.115. Failover protocol choices for PF/OpenBSD

Firewall Builder can configure CARP interfaces on BSD. For that, it needs some parameters of the CARP
protocol. You can configure these if you click "Edit protocol parameters" button in the failover group
object dialog. This brings another dialog where you can configure CARP password, vhid and some other
parameters:

Firewall Builder Cookbook

394

Figure 14.116. CARP parameters

Last thing we have to change is the names of interfaces. On OpenBSD loopback is "lo0" and ethernet
interface can be for example "pcn0". To rename interfaces find them in the tree, open in the editor and
change the name. This needs to be done with interface objects of both member firewalls and the cluster.
Significant difference between CARP protocol and heartbeat on Linux is that CARP creates its own net-
work interfaces named "carpNN". In Firewall Builder terms this means we need to name cluster interface
object "carp0" (remember that in case of Linux cluster, cluster interface name was the same as names of
corresponding member firewalls). After all interfaces have been renamed, my final configuration looks
like shown in Figure 14.117:

Note

I also changed ip addresses of interfaces pcn0 of both member firewalls to avoid conflict with
still running linux firewalls.

Firewall Builder Cookbook

395

Figure 14.117. Final configuration for PF cluster

Now we can recompile the cluster again. For PF fwbuilder generates two files for each member firewall.
One file has extension .conf and contains PF configuration. The other file has extension .fw and is an
activation script.

Looking inside the generated .conf file, we see PF implementation of the same policy rules (this is just
a fragment with first few rules):

Firewall Builder Cookbook

396

Tables: (2)
table <tbl.r0.d> { 10.3.14.50 , 10.3.14.152 , 10.3.14.151 , 10.3.14.150 }
table <tbl.r0.s> { 10.3.14.152 , 10.3.14.151 , 10.3.14.150 , 10.3.14.50 }

Rule -2 CARP (automatic)
pass quick on pcn0 inet proto carp from any to any label "RULE -2 -- ACCEPT "

Rule backup ssh access rule
backup ssh access rule
pass in quick inet proto tcp from 10.3.14.0/24 to <tbl.r0.d> port 22 \
 flags any label "RULE -1 -- ACCEPT "

Rule 0 (carp0)
block in log quick on pcn0 inet from <tbl.r0.s> to <tbl.r0.s> \
 no state label "RULE 0 -- DROP "

Rule 1 (lo0)
pass quick on lo0 inet from any to any no state label "RULE 1 -- ACCEPT "

Figure 14.118. Example of a rule associated with a cluster interface

Look at the rule #0 in the screenshot Figure 14.106 (the anti-spoofing rule). The same rule is shown in
Figure 14.118, except I removed label "outside" from the interface carp0 to make it clear which interface
is placed in the "Interface" column of the rule.

This rule has interface object that belongs to the cluster in its "Interface" column. Firewall Builder GUI
does not accept member firewall interface in this column. Only interfaces of the cluster are allowed in
the "Interface" column of the rule set that belongs to the cluster. Interfaces of the Linux cluster have the
same names as corresponding member firewall interfaces. In my example above member interfaces were
"eth0" and cluster interface had the same name. This is because cluster interface object is an abstraction
that serves several purposes: it is a place where failover protocol parameters are configured and also it
represents member firewall interfaces in rules when the program compiles the policy and generates firewall
script or configuration file. Cluster interface object will be replaced with interface of the member firewall
for which the policy is being compiled. When fwbuilder compiles it for the member #1, it replaces cluster
interface objects with interfaces of member #1. When it then compiles the same rules for member #2, it
replaces cluster interfaces with interfaces of member #2.

This feels intuitive when we build Linux cluster because names of member interfaces and cluster interfaces
are the same. When I use cluster interface "eth0" in the rule, it is essentially the same as using firewall's
interface with the same name (except it is not the same, internally) so it is the configuration I am used to
when I start configuring clusters have spent some time working with regular firewalls in fwbuilder.

Interfaces of BSD cluster have names that directly correspond to the names of failover protocol interfaces
carpNN which really exist on the firewall machine. The problem is that PF does not inspect packets on
these interfaces and therefore PF rules should not be attached to these interfaces. Yet, fwbuilder uses BSD
cluster interfaces carpNN in the same way as explained above. if you want to attach rules to particular
interfaces using "on <intf>" clause, you need to use cluster interface object in the rules. In this case, just like
when we were building Linux cluster, fwbuilder will replace carpNN with interfaces of member firewall
that are configured in the failover group of the cluster interface.

I realize this can be counter-intuitive, especially to those who know all details of BSD cluster configuration
by heart and are very used to working with CARP. We may be able to improve the model in future versions
of fwbuilder if there is enough user demand.

Firewall Builder Cookbook

397

Note

In addition to rules for the failover protocol, Firewall Builder can automatically add rules to
permit packets used by the state synchronization protocol. In case of PF this is pfsync. Protocol
parameters are configured in the "State Sync Group" object that is located in the tree immediately
under the cluster. Generated script can also configure pfsync interface and some parameters of
the protocol.

The bottom part of the activation script is interesting. This is where CARP interface is configured and PF
configuration is activated. Here is how this looks like:

configure_interfaces() {
 sync_carp_interfaces carp0
 $IFCONFIG carp0 vhid 100 pass secret carpdev pcn0

 update_addresses_of_interface \
 "carp0 10.3.14.152/0xffffff00 10.3.14.151/0xffffff00 10.3.14.150/0xffffff00" ""
 update_addresses_of_interface "lo0 ::1/128 127.0.0.1/0xff000000" ""
 update_addresses_of_interface "pcn0 10.3.14.50/0xffffff00" ""
}

log "Activating firewall script generated Thu Mar 18 20:19:42 2010 by vadim"

set_kernel_vars
configure_interfaces
prolog_commands

$PFCTL \
 -f \
 ${FWDIR}/bsd-test-1.conf || exit 1

Shell function "sync_carp_interfaces" is defined at the beginning of the same script, it compares list of
carp interfaces defined in Firewall Builder with carp interfaces that really exist on the firewall machine.
Interfaces that are missing are created and those that exist but are not defined in fwbuilder are deleted. If
the set of carp interfaces matches those defined in fwbuilder, this function does nothing. Next, the script
configured interface carp0 using parameters entered in the failover protocol dialog Figure 14.116 shown
above. Calls to shell function "update_addresses_of_interface" update ip addresses of interfaces, including
carp0. This function also does it incrementally by comparing required list of addresses with those that
really are configured on the interface. If lists match, the function does not do anything, otherwise it adds
or deletes addresses as appropriate.

Basically, you can start with OpenBSD or FreeBSD machine configured with one IP address on the inter-
face that you can use to communicate with it. Script generated by fwbuilder will set up other addresses
and failover protocol.

As you can see, conversion required few changes but not that much. I had to change firewall platform
and host OS in member firewalls and cluster object, rename interfaces, possibly change IP addresses,
change the name of the failover protocol and its parameters. Relationships between the cluster and member
firewalls remained the same and so I did not have to add or remove firewalls to cluster failover group
objects. Most importantly, I did not have to touch rules at all. Granted, this was very simple example and
in more complicated cases some rules may need to be adjusted. Most often this is the case when original
iptables policy used some modules and features unique to iptables. Most typical rules can be translated
automatically with no change in the GUI.

Firewall Builder Cookbook

398

14.4.2. Linux Cluster Using VRRPd
In this example, we work with two Linux machines running VRRPd for failover that form a High Avail-
ability (HA) firewall pair, and another machine behind them that will use this pair as a firewall. The
set-up is shown in figure Figure 14.119. Machines linux-test-1 and linux-test-2 are the firewalls and lin-
ux-test-3 is a workstation behind them. All testing is done on an isolated network using private IP ad-
dresses, subnet "outside" the firewalls is 10.3.14.0/255.255.255.0 and subnet "behind" the firewalls is
10.1.1.0/255.255.255.0. In fact, this network was located behind a router and another firewall that provid-
ed connection to the Inetrnet. In real configurations, the subnet that is 10.3.14.0 here will probably use
publicly routable IP addresses.

Figure 14.119. HA Configuration Using Two Linux Machines Running VRRPd

Note

IPv6 addresses are not used in this recipe. Some interface objects in the screenshots have IPv6
addresses because firewall objects were "discovered" using SNMP, which finds IPv6 addresses.
You can disregard these addresses while working with examples in this chapter.

14.4.2.1. Setting up VRRPd daemon

As shown in Figure 14.119, machines linux-test-1 and linux-test-2 run vrrpd daemon (VRRPD home page
[http://off.net/~jme/vrrpd/]) to create virtual IP address on both subnets. VRRPd adds a virtual IP address
to the same interface eth0 or eth1. One of the daemons becomes master and takes ownership of the virtual
address by adding it to the interface. It sends a UDP datagram to the multicast address 224.0.0.18 every
second or so to declare that it is up and running and owns the address. If the machine it is running on
shuts down for any reason, this stream of packets from the master stops and after a predetermined timeout,
the second machine becomes the master and assumes the virtual IP address. VRRP daemon also replaces
MAC address of the interface with a virtual MAC address so that when the virtual IP address is transferred
from one machine to another, all hosts on the corresponding subnet do not have to update their ARP tables
because the MAC address stays the same.

http://off.net/~jme/vrrpd/
http://off.net/~jme/vrrpd/

Firewall Builder Cookbook

399

VRRPd is very easy to configure. It does not have any configuration file; all configuration is provided by
parameters on the command line. Here is the command line for the machine linux-test-1:

vrrpd -D -i eth0 -v 1 -a none -p 110 10.3.14.150
vrrpd -D -i eth1 -v 2 -a none -p 110 10.1.1.254

Here is the same for the machine linux-test-2:

vrrpd -D -i eth0 -v 1 -a none -p 120 10.3.14.150
vrrpd -D -i eth1 -v 2 -a none -p 120 10.1.1.254

The parameter "-D" makes VRRPd become a daemon, "-i" tells it which interface it should work with,
"-v" defines the VRID (Virtual Router Identifier), "-a" is used to set up authentication (we used none
for this simple test), "-p" configures priority and the last parameter is the virtual address this instance of
VRRPd should manage. The VRID used on our two subnets should be different. Here I make the priority
of one machine higher than the other to ensure it becomes master when it comes online. This is it: once
all instances of VRRPd start on both machines, they configure IP addresses as follows (addresses added
by vrrpd are highlighted in red):

root@linux-test-1:~# ip -4 addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.1.1.1/24 brd 10.1.1.255 scope global eth1

root@linux-test-2:~# ip -4 addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.3.14.109/24 brd 10.3.14.255 scope global eth0
 inet 10.3.14.150/32 scope global eth0
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.1.1.2/24 brd 10.1.1.255 scope global eth1
 inet 10.1.1.254/32 scope global eth1

Note

Addresses added by VRRPd have a netmask of /32, while the normal netmask in this set-up for
all interfaces is /24.

At this point, we can test our configuration by pinging virtual addresses on both sides. Then kill VRRPd on
linux-test-2 and observe virtual addresses being added on the other machine. The test ping should register
a few seconds of downtime and then just keep going.

14.4.2.2. Firewall and Cluster Objects for the HA Firewall Configura-
tion with VRRPd

Now we can create objects in Firewall Builder to represent this cluster. We start with two firewall objects
configured with IP addresses but no policy or NAT rules. Interfaces and their addresses and netmasks are
shown on Figure 14.120:

Firewall Builder Cookbook

400

Figure 14.120. Interfaces and Addresses of the Cluster Members

Now we can create the cluster. Use the usual "New object" menu and choose the object type "Cluster":

Figure 14.121. Creating a New Cluster Object

This starts the wizard that helps you create new cluster object. First, choose which firewall objects will
be used for the cluster. Our test file is small and has only two firewall objects so the choice is obvious.

Firewall Builder Cookbook

401

In more complex configurations, you may have many firewall objects, not all of which need to be used
in cluster configurations. Figure 14.122

Figure 14.122. First Page of the New Cluster Wizard

Note

Since all policy and NAT rules are configured in the cluster object, the same member firewall
object can be used with different clusters. This is a great way to try different configurations or
build some temporary ones.

On the next page Figure 14.123 of the wizard we configure the mapping between cluster interfaces and
interfaces of the member firewalls. In this simple set-up the mapping is direct: interface "eth0" of the
cluster represents interfaces "eth0" of both members and the same goes for "eth1" and loopback. Things
may be more complicated if the failover protocol used for the cluster creates its own interfaces, such as
CARP on OpenBSD. In that case the name of the interface that is configured at the top of the wizard page
would be "carp0" and we would map it to interfaces of the members, say "en0" on both, using controls at
the bottom of the wizard page. However in the case of VRRP,the heartbeat and keepalived on Linux the
name of the cluster interface must match the name of the member interfaces; that is, in our case we create
cluster interfaces "eth0" and "eth1". The wizard does this automatically: it finds interfaces with the same
name in both members and suggests cluster interfaces with the same name, mapped to those interfaces of
the member firewalls. Feel free to edit if this guess was incorrect for your set-up. The "+" and "x" buttons
in the top corners of the page allow you to add and remove cluster interfaces. See Section 8.1 for more
information on the cluster interfaces in Firewall Builder.

Firewall Builder Cookbook

402

Figure 14.123. Configuring Cluster Interfaces

The next page Figure 14.124 of the wizard is used to set up virtual IP addresses and failover protocols
for the cluster interfaces. Most protocols require an IP address, which you can add by clicking the "Add
address" button. The only exception at this time is Cisco PIX, where the HA pair uses IP addresses of
the master instead of using special virtual addresses. In that case, the part of the wizard page where you
configure IP addresses will be disabled.

Choose the failover protocol using the drop-down list. Among other "real" protocols list includes item
"None". Use this item if you do not want Firewall Builder to add automatic policy rules to the generated
configuration and plan to do this yourself. Also use this "protocol" to configure cluster loopback interface.
In any case cluster interfaces must be configured with corresponding interfaces of the member firewalls
to establish the mapping.

Firewall Builder Cookbook

403

Figure 14.124. Configuring Virtual IP Addresses of Cluster Interfaces

Note

The address and netmask pair of the cluster interface must be configured exactly the same as done
by the cluster software. In the case of VRRPd, the netmask is /32 (see the output of "ip addr show"
command above where it is visible that the address added by VRRPd comes with netmask /32).
We use the same netmask in the address configuration in cluster interfaces eth0 and eth1. See
Section 14.4.2.4 for the explanation of why this netmask is important.

The final page of the wizard Figure 14.125 allows you to choose to copy policy and NAT rules from one
of the members to the new cluster object. This can be useful if you used to manage a cluster with Firewall
Builder by maitaining two firewall objects manually or with the aid of external scripts. If you decide to
use this option, the Firewall Builder GUI copies policy and NAT rules from the member you choose to the
new cluster object, then creates backup copies of both member firewall objects with the name with suffix
"-bak" and deletes all Policy and NAT rules in the rule sets of the member firewall objects it uses for the
cluster. This way, you can always return to your old set-up using these backup objects and at the same
time, new cluster configuration has all the rules in the cluster object.

Note

This is important because if a member firewall object has a policy or NAT rule set with the
same name as the one in the cluster, then Firewall Builder will use rules from the rule set of the
member, thus overriding all the rules in the cluster's rule set with the same name. This allows
you to create complex configurations where majority of the rules are defined and maintained in
the cluster object, but a few rules can be created separately in the members to complement rules
of the cluster.

Firewall Builder Cookbook

404

Figure 14.125. Final Page of the New Cluster Wizard

The following screenshot Figure 14.126 demonstrates the newly created cluster object.

Figure 14.126. Cluster Object

Each cluster interface has an additional child object (located underneath it in the tree) with the name
linux-test-1:eth0:members and linux-test-1:eth1:members. These objects are failover groups; this is where
the failover protocol and mapping between the cluster and member interfaces is configured. Screenshot
Figure 14.127 highlights failover group that belongs to interface eth0:

Firewall Builder Cookbook

405

Figure 14.127. Cluster Failover Group in the Object Tree

The failover group is configured with the name, protocol, and interfaces of the member firewalls that
correspond to the cluster interface this failover group belongs to. The failover group object selected on
Figure 14.127 looks like this:

Figure 14.128. Cluster Failover Group Object

The failover group for the interface eth1 should look the same, except for using interfaces eth1 of the
member firewalls. Use the button Manage Members to open a dialog that lets you add and remove member
firewall interfaces in the failover group.

Another new type of object that appears in the clusters is State Synchronization group Figure 14.129. This
group object defines the state synchronization protocol to be used for the cluster and interfaces of the
member firewalls where this protocol runs. In the case of Linux firewalls only the conntrack protocol is
available.

Note

The purpose of this new object is to provide configuration parameters to let Firewall Builder
generate policy rules to permit packets of this protocol. In some other cases, such as with PF on
OpenBSD where state synchronization is done via pfsync interface, Firewall Builder can gener-
ate actual configuration for the protocol itself. However at this time Firewall Builder does not
generate configuration or a command line for the conntrackd daemon.

Firewall Builder Cookbook

406

Figure 14.129. State Synchronization Group in the Object Tree

Just like as for failover groups, a state synchronization group object is configured with the name, protocol,
and member interfaces:

Figure 14.130. State Synchronization Group Object

If you do not use conntrackd in your cluster set-up and do not need iptables rules to permit its packets
in the generated script, then just do not configure state synchronization group object with interfaces of
the member firewalls. Such an empty state synchronization group object will look like this when opened
in the editor:

Figure 14.131. Empty State Synchronization Group Object

You can edit parameters of the state synchronization protocol, such as IP address of the multicast group
it uses and port number if you click Edit protocol parameters button:

Firewall Builder Cookbook

407

Figure 14.132. State Synchronization Protocol Parameters

Firewall Builder uses this information to generate policy rules to permit conntrack packets. See examples
of the output generated by the policy compiler below.

14.4.2.3. Policy and NAT Rules for the Cluster

Now we can move on to building a cluster policy and NAT rules. In the examples below, I am using a
feature introduced in Firewall Builder 4.0 that lets you quickly compile single rule and see the result in the
bottom panel of the GUI immediately. To do this, right-click anywhere in the rule to open context menu
and use item "Compile" or highlight the rule and press the "X" key. Figure 14.133

Figure 14.133. Compiling a Single Rule

Figure 14.134 shows a minimal policy rule set for the cluster that demonstrates general principles used by
Firewall Builder to generate configurations for the member firewalls.

Firewall Builder Cookbook

408

Figure 14.134. Simple Policy for the Cluster, Also Showing the Generated iptables
Commands for the Anti-Spoofing Rule

Let's inspect the policy rules shown in Figure 14.134. All rules are built with the global option "Assume
firewall is part of any" turned off in both linux-test-1 and linux-test-2 firewalls.

• Rule 0: anti-spoofing rule. When we build anti-spoofing rule for a standalone firewall, we put firewall
object in "Source", its external interface in "Interface" and make direction "Inbound". When we do this
for a cluster, we put cluster object in "Source" instead of the member firewall object. The interface
object in "Interface" element of this rule is the one that belongs to the cluster rather than its members. All
other aspects of the rule are the same. Firewall Builder generates iptables commands for this rule using
the IP addresses of the cluster (10.3.14.150 and 10.1.1.254 in our example) and the addresses of the
member firewall it compiles for, in this case 10.3.14.108 and 10.1.1.1 for linux-test-1 and 10.3.14.109
and 10.1.1.2 for linux-test-2. This is clearly visible in the generated output shown in Figure 14.134. In
other words, policy compiler processes rules twice, first compiling for the first member firewall and
then for the second one. On each pass, cluster object represents corresponding member, plus virtual
addresses configured in the cluster's interfaces.

• Rules 1 and 2: since VRRPd uses multicast to communicate between daemons running on the member
firewalls, it needs IGMP as well. Rules 1 and 2 permit packets sent to the standard multicast address
registered for IGMP in both directions (in and out). These rules use standard IPv4 address object "IGMP"
that is available in the Standard objects library. The rules could be even more restrictive and also match
IP service object "IGMP", also available in the Standard objects library. Since this service object matches
protocol number 2 and IP option "router-alert". Unfortunately, only the very latest Linux distributions
ship the iptables module ipv4options needed to match IP options so I did not put the service object in the
rule. Here is how generated iptables script look like when "Service" field on the rules 1 and 2 is "any"

linux-test-1 / Policy / rule 1
$IPTABLES -A OUTPUT -d 224.0.0.22 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 1
$IPTABLES -A OUTPUT -d 224.0.0.22 -m state --state NEW -j ACCEPT

Firewall Builder Cookbook

409

linux-test-1 / Policy / rule 2
$IPTABLES -A INPUT -s 224.0.0.22 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 2
$IPTABLES -A INPUT -s 224.0.0.22 -m state --state NEW -j ACCEPT

If I put standard IP service object "IGMP" in the "Service" field of rules 1 and 2, I get the following
iptables commands for the rule 1:

linux-test-1 / Policy / rule 1
$IPTABLES -A OUTPUT -p 2 -d 224.0.0.22 -m ipv4options --ra -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 1
$IPTABLES -A OUTPUT -p 2 -d 224.0.0.22 -m ipv4options --ra -m state --state NEW -j ACCEPT

• The rest of the rules are fairly straightforward and serve to illustrate that building a policy for the cluster
is no different than building the policy for a regular standalone firewall. Rules 3 and 4 permit access
from the firewall to internal network and the other way around. The generated iptables commands use
INPUT and OUTPUT chains and look like this:

linux-test-1 / Policy / rule 3
$IPTABLES -A OUTPUT -d 10.1.1.0/24 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 3
$IPTABLES -A OUTPUT -d 10.1.1.0/24 -m state --state NEW -j ACCEPT

linux-test-1 / Policy / rule 4
$IPTABLES -A INPUT -s 10.1.1.0/24 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 4
$IPTABLES -A INPUT -s 10.1.1.0/24 -m state --state NEW -j ACCEPT

• Rule 5 permits outbound access from the internal net to the Internet and uses chain FORWARD. The
generated iptables code for this rule is no different from that produced for a regular standalone firewall.

Note that we don't need to add explicit rule to permit VRRP and conntrackd packets to the policy. This
is because Firewall Builder adds these rules automatically. Here is how they look like in the generated
iptables script for the linux-test-1 firewall:

Firewall Builder Cookbook

410

================ Table 'filter', rule set Policy

Rule -4 VRRP (automatic)

$IPTABLES -A INPUT -i eth1 -p vrrp -d 224.0.0.18 -j ACCEPT
$IPTABLES -A OUTPUT -o eth1 -p vrrp -d 224.0.0.18 -j ACCEPT

Rule -3 VRRP (automatic)

$IPTABLES -A INPUT -i eth0 -p vrrp -d 224.0.0.18 -j ACCEPT
$IPTABLES -A OUTPUT -o eth0 -p vrrp -d 224.0.0.18 -j ACCEPT

Rule -2 CONNTRACK (automatic)

$IPTABLES -A OUTPUT -o eth1 -p udp -m udp -d 225.0.0.50 --dport 3780 -j ACCEPT

Rule -1 CONNTRACK (automatic)

$IPTABLES -A INPUT -i eth1 -p udp -m udp -d 225.0.0.50 --dport 3780 -j ACCEPT

Rules for conntrack are associated with ineterface eth1 because the state synchronization group is config-
ured with interfaces eth1 of the member firewalls (Figure 14.130).

Now let's look at the NAT rule built for this cluster Figure 14.135

Figure 14.135. NAT Rule for the Cluster

Interface eth0 used in the "Translated Source" element of this rule is the one that belongs to the cluster,
not member firewalls. The generated iptables commands use cluster interface that belongs to this interface
for the translation. Otherwise this is very common SNAT rule.

14.4.2.4. Managing the IP Addresses of the Interfaces in the Cluster
Set-Up

At the beginning of this chapter I mentioned that it is important to create the IP address of the cluster
interface with the same netmask it has on the real firewall machine. When virtual IP address is managed
by VRRPd, the netmask is /32 (See Figure 14.124). Here is what happens.

Firewall Builder Cookbook

411

The generated script can manage IP addresses of interfaces of the firewall. This is optional and is controlled
by checkboxes in the "Script" tab of the firewall object "advanced settings" dialog, Figure 14.136.

Figure 14.136. Options in the "Script" tab of the firewall object dialog

When the checkbox "Configure interfaces of the firewall machine" is turned on, Firewall Builder adds the
following lines to the generated script:

configure_interfaces() {
update_addresses_of_interface "lo ::1/128 127.0.0.1/8" ""
update_addresses_of_interface "eth0 fe80::2c:29ff:fe1e:dcaa/64 10.3.14.108/24" "10.3.14.150/32"
update_addresses_of_interface "eth1 fe80::2c:29ff:fe1e:dcb4/64 10.1.1.1/24" "10.1.1.254/32"
}

Here calls to the update_addresses_of_interface shell function try to bring ip addresses of the firewall
interfaces in sync with their configuration in Firewall Builder. IP addresses that are configured in fwbuilder
but are not present on the firewall will be added and those found on the firewall but are not configured
in fwbuilder will be removed.

Note

This is done to ensure the environment in which generated iptables rules will work really matches
assumptions under which these rules were generated. If the program generates rules assuming
certain addresses belong to the firewall, but in fact they do not, packets will go into chains different
from those used in the generated iptables commands and behavior of the firewall will be wrong.

When the script adds and removes ip addresses of the firewall interfaces, it should skip those managed by
VRRPd. VRRPd (and probably other HA software as well) does not seem to monitor the state of the virtual
addresses it adds to interfaces, assuming that it is the only agent that does so. If fwbuilder script were
to remove virtual addresses while VRRPd is still working, the cluster operation would break until vrrpd
would add them back, which only happens when it restarts or failover occurrs. So the Firewall Builder

Firewall Builder Cookbook

412

script has to know to avoid these addresses and not remove them. The second argument in the call to the
shell function update_addresses_of_interface serves this purpose, it tells the function which addresses it
should ignore. The function uses "ip addr show" command to discover addresses that already configured
on the interfaces and for the address to match, it should have exactly the same netmask as the one that
appears in the output of "ip addr show" command.

14.4.3. Linux Cluster Using a Heartbeat
In this example, we work with two Linux machines running heartbeat for failover that form a High Avail-
ability (HA) firewall pair, and another machine behind them that will use this pair as a firewall. The set up is
shown in figure Figure 14.137. Machines linux-test-1 and linux-test-2 are the firewalls and linux-test-3 is a
workstation behind them. All testing is done on an isolated network using private IP addresses, subnet "out-
side" the firewalls is 10.3.14.0/255.255.255.0 and subnet "behind" the firewalls is 10.1.1.0/255.255.255.0.
In fact, this network was located behind a router and another firewall that provided connection to the Inetr-
net. In real configurations subnet that is 10.3.14.0 here will probably use publicly routable IP addresses.

Figure 14.137. HA Configuration Using Two Linux Machines Running a Heartbeat

Note

IPv6 addresses are not used in this recipe. Some interface objects in the screenshots have IPv6
addresses because firewall objects were "discovered" using SNMP which finds IPv6 addresses.
You can disregard these addresses while working with examples in this chapter.

14.4.3.1. Setting Up the Heartbeat

As shown in Figure 14.137, machines linux-test-1 and linux-test-2 run heartbeat daemon (Linux-HA home
page [http://www.linux-ha.org/]) to create virtual IP address on both subnets. The heartbeat adds virtual

http://www.linux-ha.org/
http://www.linux-ha.org/
http://www.linux-ha.org/

Firewall Builder Cookbook

413

IP address to the same interface eth0 or eth1. One of the daemons becomes master and takes ownership of
the virtual address by adding it to the interface with the label "eth0:0" or "eth1:0".

Note

Section 8.1 explains that this "eth0:0" is not an interface and should not be used as the name of the
interface object in Firewall Builder configuration. See Section 8.1 for a more detailed explanation.

The heartbeat sends a UDP datagram to the multicast address 225.0.0.1 every second or so to declare that
it is up and running and owns the address. If the machine it is running on shuts down for any reason, this
stream of packets from the master stops and after a predetermined timeout, the second machine becomes
master and assumes the virtual IP address. The heartbeat actually is more complex than that: it can be
configured to monitor certain resources on the machine and give up the address if some conditions are met.
In that case, two daemons negotiate transfer of the address from one machine to another and the second
machine becomes active. These aspects of heartbeat configuration are outside the scope of this manual and
we will not go into more details about it. See heartbeat documentation on Linux-HA home page [http://
www.linux-ha.org/] or heartbeat manual for that.

Unlike VRRPd, heartbeat does not replace the MAC address of the active machine with a virtual one: it
uses gratutious ARP to announce the changing of the MAC address. This does not change anything in the
Firewall Builder configuration for the cluster.

Assuming you have followed installation instructions for the heartbeat and have correct package on the
machine, you can build simple configuration for it by creating just three files:

• ha.cf, the main configuration file

• haresources, resource configuration file

• authkeys, authentication information

Here is the configuration for the test setup I am using:

Figure 14.138. Heartbeat configuration files

cat ha.cf:

mcast eth0 225.0.0.1 694 1 0
mcast eth1 225.0.0.1 694 1 0
auto_failback on
node linux-test-1
node linux-test-2

cat haresources

linux-test-1 IPaddr::10.3.14.150/24/eth0/10.3.14.255
linux-test-1 IPaddr::10.1.1.254/24/eth1/10.1.1.255

cat authkeys

auth 3
3 md5 hb-auth-key

This tells the heartbeat to run two sessions, on interfaces eth0 and eth1, using multicast with default group
address 225.0.0.1 and udp port 694. There are two nodes, "linux-test-1" and "linux-test-2". File hare-

http://www.linux-ha.org/
http://www.linux-ha.org/
http://www.linux-ha.org/

Firewall Builder Cookbook

414

sources defines virtual IP addresses on both subnets and file authkeys sets up MD5 authentication with a
simple shared key. A nice aspect of the heartbeat configuration is that all three files are identical on both
machines in the cluster. File authkeys should have permissions "0600", other files can have permissions
"0644":

root@linux-test-1:/etc/ha.d# ls -la authkeys haresources ha.cf
-rw------- 1 root root 648 2010-02-03 09:17 authkeys
-rw-r--r-- 1 root root 10610 2010-02-03 09:28 ha.cf
-rw-r--r-- 1 root root 106 2010-02-04 10:21 haresources

Now we can start the heartbeat on both machines using "/etc/init.d/heartbeat start" command (on Ubuntu).
If everything is done correctly, the heartbeat daemons should come up and after a while one of them
becomes active. Which one is determined by the node name that is the first word in each line of the
haresources file. Daemons log their progress, as well as warnings and errors in the /var/log/messages file.
When the active daemon takes over the virtual IP address, it is added to the interface and look like this
(virtual addresses are highlited in red):

root@linux-test-1:~# ip -4 addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.3.14.108/24 brd 10.3.14.255 scope global eth0
 inet 10.3.14.150/24 brd 10.3.14.255 scope global secondary eth0:0
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.1.1.1/24 brd 10.1.1.255 scope global eth1
 inet 10.1.1.254/24 brd 10.1.1.255 scope global secondary eth1:0

root@linux-test-2:~# ip -4 addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 inet 127.0.0.1/8 scope host lo
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.3.14.109/24 brd 10.3.14.255 scope global eth0
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 inet 10.1.1.2/24 brd 10.1.1.255 scope global eth1

14.4.3.2. Firewall and Cluster Objects for the HA Firewall Configura-
tion with Heartbeat

Now we can create objects in Firewall Builder to represent this cluster. We start with two firewall objects
configured with ip addresses but no policy or NAT rules. Interfaces and their addresses and netmasks are
shown on Figure 14.139:

Firewall Builder Cookbook

415

Figure 14.139. Interfaces and Addresses of the Cluster Members

Now create the new cluster. First, select firewalls "linux-test-1" and "linux-test-2" in the tree, then click
right mouse button to open context menu and use item "New cluster from selected firewalls" as shown
on Figure 14.140.

Figure 14.140. Creating a New Cluster Object from Selected Member Firewalls

This method opens up the wizard that creates a new cluster object with the list of the firewalls that shows
two firewalls that were selected in the tree:

Firewall Builder Cookbook

416

Figure 14.141. Creating a New Cluster Object

After you click "Next", you arrive on the next page where you establish correspondence between cluster
interfaces and interfaces of the member firewalls. The program finds interfaces of the members with the
same name that can be used for a cluster and preconfigures cluster interfaces using this information. In
our case, it created cluster interfaces "eth0", "eth1" and "lo" and mapped them to the inetrfaces with the
same name in both members. See Figure 14.142:

Firewall Builder Cookbook

417

Figure 14.142. Arranging Cluster Interfaces

This example is straightforward because there is a direct correspondence between them. In more complex
cases, member firewalls may have different number of interfaces, only some of which should be used for
the cluster configuration. Or failover protocol used for the cluster may create its own interfaces, such as
CARP on OpenBSD. In that case, the name of the interface that is configured at the top of the wizard page
would be "carp0" and we would map it to interfaces of the members, say "en0" on both, using controls
at the bottom of the wizard page. However, the heartbeat does not create the new interface so the cluster
interface objects must have the same name as corresponding member interfaces; in our case "eth0", "eth1"
and "lo". You can create new cluster interfaces or delete existing ones on this page using the "+" and "x"
buttons. See Section 8.1 for more information on the cluster interfaces in Firewall Builder.

We assign IP addresses and choose failover protocols for the cluster interfaces on the next page of the
wizard Figure 14.143:

Firewall Builder Cookbook

418

Figure 14.143. Configuring the IP Addresses of the Cluster Interfaces

Most protocols require an IP address, which you can add by clicking "Add address" button. The only
exception at this time is Cisco PIX, where HA pair uses IP addresses of the master instead of using special
virtual addresses. In that case the part of the wizard page where you configure IP addresses will be disabled.

Choose the failover protocol using drop-down list. Among other "real" protocols list includes item "None".
Use this item if you do not want fwbuilder to add automatic policy rules to the generated configuration
and plan to do this yourself. Also use this "protocol" to configure cluster loopback interface. In any case
cluster interfaces must be configured with corresponding interfaces of the member firewalls to establish
the mapping.

Note

The address and netmask pair of the cluster interface must be configured exactly the same as
done by the cluster software. In the case of the heartbeat, the netmask is /24. See the output of "ip
addr show" command above where it is visible that the address added by heartbeat comes with
netmask /24. The netmask is defined in the "haresources" file. We use the same netmask in the
address configuration in cluster interfaces eth0 and eth1. See Section 14.4.2.4 for the explanation
of why this netmask is important.

Final page of the wizard Figure 14.144 allows you to choose to copy policy and NAT rules from one of
the members to the new cluster object. This can be useful if you used to manage a cluster with fwbuilder
by maitaining two firewall objects manually or with the aid of external scripts. If you decide to use this
option, the Firewall Builder GUI copies policy and NAT rules from the member you choose to the new
cluster object, then creates backup copies of both member firewall objects with the name with suffix "-

Firewall Builder Cookbook

419

bak" and deletes all policy and NAT rules in the rule sets of the member firewall objects it uses for the
cluster. This way, you can always return to your old setup using these backup objects and at the same time,
new cluster configuration has all the rules in the cluster object.

Note

This is important because if a member firewall object has a policy or NAT rule set with the
same name as the one in the cluster, then Firewall Builder will use rules from the rule set of the
member, thus overriding all the rules in the cluster's rule set with the same name. This allows
you to create complex configurations where majority of the rules are defined and maintained in
the cluster object, but a few rules can be created separately in the members to complement rules
of the cluster.

Figure 14.144. Final Page of the New Cluster Wizard

The following screenshot Figure 14.145 demonstrates a newly created cluster object.

Firewall Builder Cookbook

420

Figure 14.145. Cluster Object

Each cluster interface has an additional child object (located underneath it in the tree) with the name
linux-test-1:eth0:members and linux-test-1:eth1:members. These objects are failover groups, this is where
the failover protocol and mapping between the cluster and member interfaces is configured. The screenshot
Figure 14.146 highlights failover group that belongs to interface eth0:

Figure 14.146. Cluster Failover Group in the Object Tree

The failover group is configured with the name, protocol, and interfaces of the member firewalls that
correspond to the cluster interface this failover group belongs to. Failover group object selected on Fig-
ure 14.146 looks like this:

Figure 14.147. Cluster Failover Group Object

Firewall Builder Cookbook

421

The ailover group for the interface eth1 should look the same, except for using interfaces eth1 of the
member firewalls. Use button Manage Members to open a dialog that lets you add and remove member
firewall interfaces in the failover group.

Another new type of object that appears in the clusters is the state synchronization group Figure 14.148.
This group object defines state synchronization protocol used for the cluster and interfaces of the member
firewalls where this protocol runs. In the case of Linux firewalls only conntrack protocol is available.

Note

The purpose of this new object is to provide all necessary configuration parameters to let Firewall
Builder generate policy rules to permit packets of this protocol. In some other cases, such as with
PF on OpenBSD where state synchronization is done via pfsync interface, Firewall Builder can
generate actual configuration for the protocol itself. However at this time Firewall Builder does
not generate configuration or command line for the conntrackd daemon.

Figure 14.148. State Synchronization Group in the Object Tree

Just as for failover group objects, a state synchronization group object is configured with the name, pro-
tocol, and member interfaces:

Figure 14.149. State Synchronization Group Object

If you do not use conntrackd in your cluster set-up and do not need iptables rules to permit its packets
in the generated script, then just do not configure state synchronization group object with interfaces of
the member firewalls. Such empty state synchronization group object will look like this when opened in
the editor:

Firewall Builder Cookbook

422

Figure 14.150. Empty State Synchronization Group Object

You can edit parameters of the state synchronization protocol, such as the IP address of the multicast group
it uses and port number if you click the Edit protocol parameters button:

Figure 14.151. State Synchronization Protocol Parameters

Firewall Builder uses this information to generate policy rules to permit conntrack packets. See examples
of the output generated by the policy compiler below.

Note

There is very little difference between building a cluster using VRRPd or heartbeat in Firewall
Builder. To switch from one protocol to the other you would need to do the following:

• Open each failover group object in the editor and change protocol

• VRRPd uses netmask /32 for the virtual IP addresses, so if your heartbeat setup uses /24, then
you need to change these too.

This is it. If your heartbeat setup uses /32 netmask, then all you need to do is switch the protocol
in the failover groups.

14.4.3.3. Policy Rules for the Cluster

Note

Examples in this recipe illustrate another useful feature of cluster configurations in Firewall
Builder: cluster object "linux-cluster-hb" used in this recipe and cluster object "linux-cluster"
from the previous one (Section 14.4.2) use the same firewall objects as member firewalls but gen-

Firewall Builder Cookbook

423

erate configurations for clusters based on different failover protocols. The same member firewall
object may be used with several cluster objects to test different configurations or for migration.

Now we can move on to building cluster policy and NAT rules. In the examples below I am using a
Firewall Builder feature that lets you quickly compile a single rule and see the result in the bottom panel
of the GUI immediately. To do this, right-click anywhere in the rule to open context menu and use the
item "Compile" or highlight the rule and hit keyboard key "X". Figure 14.152

Figure 14.152. Compiling a Single Rule

Figure 14.153 shows a minimal policy rule set for the cluster that demonstrates general principles used by
Firewall Builder to generate configurations for the member firewalls.

Figure 14.153. Simple Policy for the Cluster, Also Showing Generated iptables
Commands for the Anti-Spoofing Rule

Firewall Builder Cookbook

424

Let's inspect the policy rules shown in Figure 14.153. All rules are built with the global option "Assume
firewall is part of any" turned off in both linux-test-1 and linux-test-2 firewalls.

• Rule 0: anti-spoofing rule. When we build anti-spoofing rule for a standalone firewall, we put firewall
object in "Source", its external interface in "Interface" and make direction "Inbound". When we do this
for a cluster, we put cluster object in "Source" instead of the member firewall object. The interface
object in "Interface" element of this rule is the one that belongs to the cluster rather than its members.
All other aspects of the rule are the same. Firewall Builder generates iptables commands for this rule
using ip addresses of the cluster (10.3.14.150 and 10.1.1.254 in our example) and addresses of the
member firewall it compiles for, in this case 10.3.14.108 and 10.1.1.1 for linux-test-1 and 10.3.14.109
and 10.1.1.2 for linux-test-2. This is clearly visible in the generated output shown in Figure 14.153. In
other words, policy compiler processes rules twice, first compiling for the first member firewall and
then for the second one. On each pass, cluster object represents corresponding member, plus virtual
addresses configured in the cluster's interfaces.

• Rules 1 and 2: heartbeat can be configured to use either multicast or unicast addresses. See below for
the example of configuration with unicast addresses, but by default it is assumed to use multicast. Rules
1 and 2 permit IGMP packets that the system needs to be able to join multicast group. Rules 1 and 2
permit packets sent to the standard multicast address registered for IGMP in both directions (in and out).
These rules use standard IPv4 address object "IGMP" that is available in the Standard objects library.
The rules could be even more restrictive and also match IP service object "IGMP", also available in
the Standard objects library. Since this service object matches protocol number 2 and IP option "router-
alert". Unfortunately only the very latest Linux distributions ship the iptables module ipv4options that
is needed to match IP options so I did not put the service object in the rule. Here is how the generated
iptables script look like when "Service" field on the rules 1 and 2 is "any"

linux-test-1 / Policy / rule 1
$IPTABLES -A OUTPUT -d 224.0.0.22 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 1
$IPTABLES -A OUTPUT -d 224.0.0.22 -m state --state NEW -j ACCEPT

linux-test-1 / Policy / rule 2
$IPTABLES -A INPUT -s 224.0.0.22 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 2
$IPTABLES -A INPUT -s 224.0.0.22 -m state --state NEW -j ACCEPT

If I put standard IP service object "IGMP" in the "Service" field of rules 1 and 2, I get the following
iptables commands for the rule 1:

linux-test-1 / Policy / rule 1
$IPTABLES -A OUTPUT -p 2 -d 224.0.0.22 -m ipv4options --ra -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 1
$IPTABLES -A OUTPUT -p 2 -d 224.0.0.22 -m ipv4options --ra -m state --state NEW -j ACCEPT

• The rest of the rules are fairly usual and serve to illustrate that building a policy for the cluster is no
different than building the policy for a regular standalone firewall. Rules 3 and 4 permit access from the
firewall to internal network and the other way around. The generated iptables commands use INPUT
and OUTPUT chains and look like this:

Firewall Builder Cookbook

425

linux-test-1 / Policy / rule 3
$IPTABLES -A OUTPUT -d 10.1.1.0/24 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 3
$IPTABLES -A OUTPUT -d 10.1.1.0/24 -m state --state NEW -j ACCEPT

linux-test-1 / Policy / rule 4
$IPTABLES -A INPUT -s 10.1.1.0/24 -m state --state NEW -j ACCEPT

linux-test-2 / Policy / rule 4
$IPTABLES -A INPUT -s 10.1.1.0/24 -m state --state NEW -j ACCEPT

• Rule 5 permits outbound access from the internal net to the Internet and uses chain FORWARD. The
generated iptables code for this rule is no different from that produced for a regular standalone firewall.

Note that we don't need to add explicit rule to permit heartbeat and conntrackd packets to the policy. This
is because fwbuilder adds these rules automatically. Here is how they look like in the generated iptables
script for the linux-test-1 firewall:

================ Table 'filter', rule set Policy

Rule -6 heartbeat (automatic)

$IPTABLES -A OUTPUT -o eth1 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -5 heartbeat (automatic)

$IPTABLES -A INPUT -i eth1 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -4 heartbeat (automatic)

$IPTABLES -A OUTPUT -o eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -3 heartbeat (automatic)

$IPTABLES -A INPUT -i eth0 -p udp -m udp -d 224.0.10.100 --dport 694 -j ACCEPT

Rule -2 CONNTRACK (automatic)

$IPTABLES -A OUTPUT -o eth1 -p udp -m udp -d 225.0.0.50 --dport 3780 -j ACCEPT

Rule -1 CONNTRACK (automatic)

$IPTABLES -A INPUT -i eth1 -p udp -m udp -d 225.0.0.50 --dport 3780 -j ACCEPT

The rules for conntrack are associated with ineterface eth1 because the state synchronization group is
configured with interfaces eth1 of the member firewalls (Figure 14.149).

14.4.3.4. Using unicast configuration for heartbeat and conntrack

Failover protocol heartbeat and state synchronization protocol conntrack can work using either multicast
or unicast addresses. Configuration described in this recipe so far used multicast addresses for both. To
switch to unicast, you need to change configuration of heartbeat in the ha.cnf file to use unicast. Here is
how it looks like for the machine linux-test-1:

Firewall Builder Cookbook

426

cat ha.cnf
ucast eth0 10.3.14.109
ucast eth1 10.1.1.2

Before, when heartbeat was configured to use multicast, the ha.cnf file was identical on both cluster mem-
ber firewalls. Now that each machine is configured with IP address of the other machine in the cluster,
ha.cnf files are different.

Apparently conntrackd can also work using unicast addresses however I can not provide example of its
configuration.

To build iptables rules for heartbeat and conntrack working with unicast addresses, open failover group
objects associated with cluster interfaces as shown in Figure 14.146 and Figure 14.147, click "Edit protocol
parameters" button and turn on checkbox "Use unicast address":

Figure 14.154. Using Heartbeat in Unicast Mode

To switch to unicast for conntrackd, open the state synchronization group object in the editor and click the
"Edit protocol parameters" button, then check the "Use unicast address" checkbox:

Firewall Builder Cookbook

427

Figure 14.155. Using Heartbeat in Unicast Mode

Note

When you switch to unicast, the "Address" input field in the heartbeat and conntrack protocol
parameters dialogs becomes disabled.

Switching to unicast makes Firewall Builder generate iptables commands that match IP address of the peer
firewall for the corresponding interface pair. Here is the script generated for the machine linux-test-1:

Rule -4 heartbeat (automatic)

$IPTABLES -A OUTPUT -o eth0 -p udp -m udp -d 10.3.14.109 --dport 694 -j ACCEPT

Rule -3 heartbeat (automatic)

$IPTABLES -A INPUT -i eth0 -p udp -m udp -s 10.3.14.109 --dport 694 -j ACCEPT

Rule -2 CONNTRACK (automatic)

$IPTABLES -A OUTPUT -o eth1 -p udp -m udp -d 10.1.1.2 --dport 3780 -j ACCEPT

Rule -1 CONNTRACK (automatic)

$IPTABLES -A INPUT -i eth1 -p udp -m udp -s 10.1.1.2 --dport 3780 -j ACCEPT

14.4.3.5. NAT Rules for the Cluster

Now let's look at the NAT rule built for this cluster Figure 14.156

Firewall Builder Cookbook

428

Figure 14.156. NAT Rule for the Cluster

The interface eth0 used in the "Translated Source" element of this rule is the one that belongs to the
cluster, not member firewalls. The generated iptables commands use the cluster interface that belongs to
this interface for the translation. Otherwise, this is a very straightforward SNAT rule.

14.4.3.6. Managing IP Addresses of the Interfaces in a Heartbeat
Cluster Setup

In order to ensure the environment in which generated iptables rules will work really matches assumptions
under which these rules were generated, Firewall Builder can manage the IP addresses of the interfaces of
the firewall machine. This feature is optional and is controlled by the checkbox "Configure interfaces of
the firewall machine" in the "Script" tab of the firewall object "advanced settings" dialog, Figure 14.157:

Figure 14.157. Options in the "Script" Tab of the Firewall Object Dialog

Firewall Builder Cookbook

429

The reason for this is that if the program generates rules assuming certain addresses belong to the firewall,
but in fact they do not, packets will go into chains different from those used in the generated iptables
commands and the behavior of the firewall will be wrong.

The code that manages the addresses of interfaces should be able to find and ignore addresses added by
the failover daemons such as VRRPd, heartbeat, or keepalived. The program does this by looking at the IP
addresses of the cluster interfaces. It is important, therefore, to configure these addresses exactly as they
are done by the failover daemons, including both the address and netmask. The heartbeat configuration
used in the recipe Figure 14.138 configures virtual IP address with netmask /24. The addresses of the
cluster interfaces must be configured in exactly the same way; otherwise, the generated script will kill
them when it activates firewall policy. This is shown in Figure 14.143

14.4.4. Linux cluster with OpenVPN tunnel interfaces

In this example, we are working with the same two Linux machines used in the previous example Sec-
tion 14.4.3 running heartbeat for failover that form a High Availability (HA) firewall pair. In addition to
standard Ethernet interfaces the firewalls in the cluster are using an OpenVPN tunnel interface, tun0, to
connect to a remote location.

Figure 14.158. Linux Cluster with OpenVPN Tunnel Interfaces

Firewall Builder Cookbook

430

Note

You must configure OpenVPN tunnels outside of Firewall Builder. Configuration of OpenVPN
tunnes is outside the scope of this cookbook; you can find more information about OpenVPN and
information on configuring tunnels at www.openvpn.net.

In this scenario, in addition to the regular Ethernet interfaces failing over in the event of a failure, we
also want the OpenVPN tunnel interface, tun0, to failover automatically as well. This design requires that
the OpenVPN tunnel configuration use the outide interface's virtual address as the tunnel source which
introduces some complications during a failover event.

The first issue is that the OpenVPN tunnel on the slave firewall, linux-test-2, cannot be started while it is
in slave mode. This is due to the fact that the IP address it is configured to use as the tunnel source address,
the virtual address, does not exist on the server (remember that master will be configured with the virtual
address unless there is a failover event).

This behavior leads to the second issue, which is that the Firewall Builder-generated script will fail to start
if the tunnel interface, tun0, is used in any of the firewall rules. Since the tun0 interface does not exist on
the slave firewall the script cannot implement the rules as defined which causes it to exit with an error.

The solution to these problems is to use OpenVPN's persistent tunnel interfaces combined with some
additional logic in the heartbeat configuration automate the tunnel interface failover.

14.4.4.1. Creating Persistent Tunnels in OpenVPN

OpenVPN provides a feature called "persistent tunnels". These are tunnel interfaces that always exist even
if the OpenVPN daemon is not running. The tunnel interface needs to be created early in the boot sequence;
you can do this by adding the following to the file /etc/network/intefaces.

auto tun0
iface tun0 inet static
 address 192.168.123.1
 netmask 255.255.255.252
 pre-up openvpn --mktun --dev tun0

Note

Examples are based on Ubuntu Server, other distributions may have different network initializa-
tion files and syntax.

The "openvpn --mktun --dev tun0" command creates a tunnel interface, but note that this is an interface
"stub" since the full OpenVPN configuration has not been applied and thus the tunnel interface is not
providing any connectivity to the remote site. Later when the OpenVPN daemon is run, the rest of the
VPN configuration will be applied to this interface.

14.4.4.2. Failover scripts for OpenVPN

Now that we have a persistent tunnel interface, the second part of this solution has two components. First,
we need a script to restart the OpenVPN daemon and second we need to add this script to the heartbeat
configuration so that it is called if there is a failover event.

Here's an example of a wrapper script that will restart the OpenVPN daemon.

Firewall Builder Cookbook

431

root@linux-test-2:/etc/ha.d# cat resource.d/OpenVPN
#
#!/bin/sh
#
Description: a wrapper to restart OpenVPN daemon at the takeover event
#
Author: Vadim Kurland
Copyright: (C) 2010 NetCitadel LLC
#
An example usage in /etc/ha.d/haresources:
#
node1 10.0.0.170 OpenVPN::restart
#

. /etc/ha.d/resource.d/hto-mapfuncs

usage() {
 echo "usage: $0 $LEGAL_ACTIONS"
 exit 1
}

op=$1

/etc/init.d/openvpn $1

exit 0

To execute this wrapper script on a failover event, we need to add it to the haresources file as shown below.

root@linux-test-1:/etc/ha.d# cat haresources
linux-test-1 IPaddr::10.3.14.150/24/eth0/10.3.14.255
linux-test-1 IPaddr::10.1.1.1/24/eth1/10.1.1.255
linux-test-1 10.3.14.150 OpenVPN::restart

With this configuration in place, you can now use the tun0 interface as you would use any other interface
in your Firewall Builder cluster Policy rules.

14.4.5. Linux Cluster Using Heartbeat and VLAN Inter-
faces

In this recipe, we are looking at the Linux cluster configuration using heartbeat and VLANs shown in
Figure 14.159. Interface eth1 of both firewalls is configured to run two VLANs, 101 and 102, connected
to the protected subnet and DMZ respectively. The heartbeat runs on all three connections: eth0, eth1.101
and eth1.102. This recipe demosntrates use of VLAN interfaces in Firewall Builder.

Firewall Builder Cookbook

432

Figure 14.159. Linux Cluster Using Heartbeat and VLANs

Note

IPv6 addresses are not used in this recipe. Some interface objects in the screenshots have IPv6
addresses, because firewall objects were "discovered" using SNMP, which finds IPv6 addresses.
You can disregard these addresses while working with examples in this chapter.

14.4.5.1. Configuring Member Firewall Objects

As in the previous examples, we start with member firewall objcts. The difference between this and pre-
vious examples is that now we need to configure VLAN interfaces. Let's start with firewall objects with
interfaces eth0 and eth1. In fact, these objects are copies of the linux-test-1 and linux-test-2 objects used in
Section 14.4.3. New objects have names linux-test-3 and linux-test-4. I am going to add VLAN interfaces
and rearrange IP address objects to match the network diagram Figure 14.159

Firewall Builder Cookbook

433

Figure 14.160. Member Firewall Objects without VLAN Interfaces

First, we need to add VLAN subinterface to eth1. To do this, select eth1 in the tree, right-click, and select
"New interface" from the context menu to add the interface object:

Table 14.3.

Figure 14.161. Using the Context Menu
to Add a Subinterface

Figure 14.162. Subinterface Created
with a Default Name

The new interface object is created with the default name "Interface". Double-click it to open it in the
editor and rename it to eth1.101:

Firewall Builder Cookbook

434

Figure 14.163. VLAN Subinterface in the Editor

Click the "Advanced interface settings" button to verify its VLAN configuration:

Figure 14.164. VLAN Configuration of the Subinterface

Note that interface type has been set to VLAN automatically. This is because Firewall Builder analyses the
name of the subinterface and automatically chooses the correct type in the "Advanced" settings dialog. If
the interface name matches a standard VLAN interface name for the chosen host OS, then it automatically
is recognized as a VLAN subinterface and the program extracts VLAN ID from its name. For example,
supported VLAN interface names on Linux are "eth1.101", "eth1.0101", "vlan101", "vlan0101". On other
OSs, naming conventions are often different.

Create Subinterface eth1.102 Using the Same Method.

Now you can move IP address objects from the interface eth1 to subinterface eth1.101. Use the context
menu items Cut and Paste to do this. While doing this, I also removed the IPv6 addresses that are not used
in this example. You should arrive at the following configuration:

Firewall Builder Cookbook

435

Figure 14.165. IP Addresses Reassigned to the Subinterface

We also need to configure IP address for the second VLAN interface eth1.102 using context menu item
"New address".

Finally, we have the firewall object linux-test-3 configured according to the network diagram Fig-
ure 14.159:

Figure 14.166. Adding IP Addresses to VLAN Subinterface

This is not quite all yet though. Interface eth1 is now a parent of two VLAN subinterfaces eth1.101 and
eth1.102. In this configuration, eth1 does not have an IP address of its own. To reflect this, open it in the
editor and check "Unnumbered" interface button as shown below:

Figure 14.167. Interface eth1 Is Unnumbered

We need to configure the second firewall object linux-test-4 as well. You can repeat the process you just
used to add subinterfaces and addresses like it was done for linux-test-3, or instead of doing this from
scratch, you can copy and paste interface objects eth1.101 and eth1.102 from linux-test-3 to interface eth1
of linux-test-4 and then just edit addresses. Here is the final configuration of both member firewalls:

Firewall Builder Cookbook

436

Figure 14.168. VLAN Subinterface and Addresses of Both Member Firewalls

14.4.5.2. Building a Cluster Object

Now that both member firewall objects are ready, we can create an object for the cluster. Use the "New
Object" menu, and select the "Cluster" option to launch the wizard. On the first page of the wizard, choose
linux-test-3 and linux-test-4 firewalls and enter the name for the cluster object:

Figure 14.169. Creating the Cluster Object

On the next page of the wizard, you can build cluster interfaces. The program finds interfaces of the member
firewalls with the same name and preconfigures cluster interface objects. On this page of the wizard, you
can add or delete cluster interfaces and establuish correspondence between them and interfaces of the
member firewalls. The screenshot Figure 14.170 shows this page:

Firewall Builder Cookbook

437

Figure 14.170. Interfaces of the Cluster

Note

You only need to create interfaces of the cluster object that correspond to the inetrfaces of member
firewalls that actually pass traffic and run failover protocols. This means you need eth1.101,
eth1.102 cluster interfaces but do not need eth1.

Moving on, on the next page of the wizard we configure IP addresses of the cluster interfaces accroding
to our network diagram Figure 14.159:

Firewall Builder Cookbook

438

Figure 14.171. IP Addresses of the Cluster Interfacess

The next page of the wizard offers an opportunity to use policy and nat rules of one of the member firewalls
for the cluster. However since our member firewalls have no rules, we do not need to use this feature and
can just finish creating new cluster object. New cluster object is shown on Figure 14.172:

Figure 14.172. Cluster Object Configuration

14.4.5.3. Managing VLAN Interfaces and Their IP Addresses

Firewall Builder can generate a shell script to configure VLAN interfaces for both member firewalls. The
script is in fact a shell function inside the common firewall configuration script Firewall Builder creates for

Firewall Builder Cookbook

439

each firewall. To activate this feature, open each member firewall object in the editor by double clicking it
in the tree and click "Firewall Settings" button, then navigate to the "Script" tab of the dialog. Screenshot
Figure 14.173 shows this tab. Turn checkbox "Configure VLAN interfaces" on:

Figure 14.173. Turn VLAN Configuration On

If you compile the policy for the cluster (or a standalone firewall) with the "Configure VLAN interfaces"
checkbox turned on, the generated script includes the following fragment that is executed before iptables
rules are loaded:

configure_interfaces() {
 :
 # Configure interfaces
 update_vlans_of_interface "eth1 eth1.101 eth1.102"
 clear_vlans_except_known eth1.101@eth1 eth1.102@eth1
 update_addresses_of_interface "lo 127.0.0.1/8" ""
 update_addresses_of_interface "eth0 10.3.14.108/24" "10.3.14.150/24"
 update_addresses_of_interface "eth1" ""
 update_addresses_of_interface "eth1.101 10.1.1.1/24" "10.1.1.254/24"
 update_addresses_of_interface "eth1.102 10.1.2.1/24" "10.1.2.254/24"
}

Lines highlighted in red configure VLAN interfaces. The first command, a call to the
update_vlans_of_interface shell function, checks if vlan interfaces eth1.101 and eth1.102 already exist
and adds them if they are not there. It uses vconfig utility to do this. If VLAN interfaces with these names
already exist, the function does nothing. This allows for incremental management of the VLAN interfaces,
that is, when the script runs again, it does not try to add interfaces that already exist. It does not remove
and add them back, either.

Tip

Several naming conventions exist for VLAN interfaces on Linux and the script recognizes all of
them. You call the VLAN interface "eth1.101", "eth1.0101", "vlan101" or "vlan0101".

To test this feature, you can run the generated script with the command-line parameter "test_interfaces".
This makes the script analyse interfaces and print commands that it would normally execute to configure
them, but it does not actually execute these commands but only prints them. To illustrate this, I start with
machine linux-test-4 in the state where it has no VLAN interfaces and some IP addresses do not match

Firewall Builder Cookbook

440

configuration defined in fwbuilder. Running the script with "test_interfaces" command line parameter
demonstrates what it is going to do to bring configuration of the machine in sync with setup configured
in fwbuilder:

root@linux-test-4:~# ip addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:fc:67:8c brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.109/24 brd 10.3.14.255 scope global eth0
 inet6 fe80::20c:29ff:fefc:678c/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:fc:67:96 brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.2/24 brd 10.1.1.255 scope global eth1
 inet6 fe80::20c:29ff:fefc:6796/64 scope link
 valid_lft forever preferred_lft forever

root@linux-test-4:~# /etc/fw/linux-test-4.fw test_interfaces
Adding VLAN interface eth1.101 (parent: eth1)
vconfig set_name_type DEV_PLUS_VID_NO_PAD
vconfig add eth1 101
ifconfig eth1.101 up
Adding VLAN interface eth1.102 (parent: eth1)
vconfig set_name_type DEV_PLUS_VID_NO_PAD
vconfig add eth1 102
ifconfig eth1.102 up
Removing ip address: eth1 10.1.1.2/24
ip addr del 10.1.1.2/24 dev eth1
ifconfig eth1 up
Interface eth1.101 does not exist
Adding ip address: eth1.101 10.1.1.2/24
ip addr add 10.1.1.2/24 dev eth1.101
ifconfig eth1.101 up
Interface eth1.102 does not exist
Adding ip address: eth1.102 10.1.2.2/24
ip addr add 10.1.2.2/24 dev eth1.102
ifconfig eth1.102 up

Commands that manage VLAN interfaces are highlighted in red. The script adds VLAN interfaces eth1.101
and eth1.102 to eth1 and brings them up, then removes IP address 10.1.1.2 from eth1 and adds addresses
10.1.1.2 to eth1.101 and 10.1.2.2 to eth1.102.

To set interfaces up and load iptables rules, just run the script with command line parameter "start". If you
only want to try to configure interfaces but not load iptables rules just yet, run the script with command-line
parameter "inetrfaces". Here is what happens:

root@linux-test-2:~# /etc/fw/linux-test-4.fw interfaces
Adding VLAN interface eth1.101 (parent: eth1)
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 101 to IF -:eth1:-
Adding VLAN interface eth1.102 (parent: eth1)
Set name-type for VLAN subsystem. Should be visible in /proc/net/vlan/config
Added VLAN with VID == 102 to IF -:eth1:-
Removing ip address: eth1 10.1.1.2/24
Adding ip address: eth1.101 10.1.1.2/24
Adding ip address: eth1.102 10.1.2.2/24

Firewall Builder Cookbook

441

We can now verify that the script added VLAN inetrfaces and configured IP addresses:

root@linux-test-2:~# ip addr ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:fc:67:8c brd ff:ff:ff:ff:ff:ff
 inet 10.3.14.109/24 brd 10.3.14.255 scope global eth0
 inet6 fe80::20c:29ff:fefc:678c/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
 link/ether 00:0c:29:fc:67:96 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::20c:29ff:fefc:6796/64 scope link
 valid_lft forever preferred_lft forever
4: eth1.101@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 00:0c:29:fc:67:96 brd ff:ff:ff:ff:ff:ff
 inet 10.1.1.2/24 scope global eth1.101
 inet6 fe80::20c:29ff:fefc:6796/64 scope link
 valid_lft forever preferred_lft forever
5: eth1.102@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 00:0c:29:fc:67:96 brd ff:ff:ff:ff:ff:ff
 inet 10.1.2.2/24 scope global eth1.102
 inet6 fe80::20c:29ff:fefc:6796/64 scope link
 valid_lft forever preferred_lft forever

Now that vlan interfaces are there and IP addresses are correct, lets see what happens if we run the script
again:

root@linux-test-2:~# /etc/fw/linux-test-4.fw test_interfaces
root@linux-test-2:~#

The script verified configuration and has found that it does not need to change anything.

14.4.5.4. Heartbeat Configuration

Heartbeat configuration in this setup is rather straightforward and is not very different from the one we
used in the previous recipe Section 14.4.3.

Firewall Builder Cookbook

442

Figure 14.174. Heartbeat Configuration Files

cat ha.cf:

mcast eth0 225.0.0.1 694 1 0
mcast eth1.101 225.0.0.1 694 1 0
mcast eth1.102 225.0.0.1 694 1 0
auto_failback on
node linux-test-1
node linux-test-2

cat haresources

linux-test-1 IPaddr::10.3.14.150/24/eth0/10.3.14.255
linux-test-1 IPaddr::10.1.1.254/24/eth1.101/10.1.1.255
linux-test-1 IPaddr::10.1.2.254/24/eth1.102/10.1.2.255

cat authkeys

auth 3
3 md5 hb-auth-key

The difference between heartbeat configuration in Section 14.4.3 and this is that we now run it over three
interfaces, using VLAN interfaces eth1.101 and eth1.102 instead of eth1. Otherwise it works exacly the
same and manages virtual addresses 10.3.14.150, 10.1.1.254 and 10.1.2.254 on corresponding subnets.

Policy and NAT rule configuration in this setup is also the same as in Section 14.4.3 and we won't repeat
it here.

14.4.6. Linux cluster using heartbeat running over dedi-
cated interface

Documentation coming soon...

14.4.7. State synchronization with conntrackd in Linux
cluster

Documentation coming soon...

14.4.8. OpenBSD cluster

Documentation coming soon...

14.4.9. PIX cluster

Documentation coming soon...

Firewall Builder Cookbook

443

14.5. Examples of Traffic Shaping

14.5.1. Basic Rate Limiting
This example shows how you can use Firewall Builder to classify traffic and then use the Linux Traffic
Control (tc) feature to rate limit the amount of bandwidth that a specific application can use.

For this example we will be using Firewall Builder to configure a Linux host with a webserver. The
generated firewall script will be run directly on the webserver and this is also where the traffic shaping
will be done. The goal of this example is to limit the total bandwidth used for HTTP traffic to be 2Mbps or
less. You can extend the same principles to more complex scenarios using more advanced features in tc.

Defining the classification in Firewall Builder

First we need to create an object with the source port set to 80. This corresponds to the HTTP traffic
leaving the server which is what we want to limit.

Figure 14.175. HTTP source object

Next we need to decide what classification class ID we want to use for this traffic. This is the value that
will be configured in Firewall Builder to have iptables set the "-j CLASSIFY --set-class" target and value.
For this example we are going to use class ID 1:10.

To set the class ID for the HTTP traffic originating from the server, we need to add a rule that allows the
traffic as shown in the Figure 14.176.

Figure 14.176. Classify Rule

To create this rule the following was done:

1. Set Source to firewall object, in our case web-1

2. Set the Service to be the HTTP source object were created previously

3. Set the Action to be Classify

4. Turn logging off (optional)

When we set the Action to Classify, the Editor Panel provides an input box where we can set the class ID
value. In this case we used 1:10 as shown in Figure 14.177 below.

Firewall Builder Cookbook

444

Figure 14.177. Classify Rule

Configuring tc to rate limit traffic

In this example we want to limit the amount of HTTP traffic being served by this server to 2Mbps. This
might be due to usage charges, limited available bandwidth, etc.

Once the traffic has been set with the class ID, in our case we used 1:10, you can use Traffic Control (tc)
to match the class ID and limit the bandwidth for a specific class ID. Tc is configured through a set of
commands run from a shell. You can find out more about available tc commands by typing "man tc".

In this case we want the tc commands to be run every time the Firewall Builder generated script is run, so
we are going to add them to the Epilog of the web-1 firewall object.

Double-click the firewall object to open it for editing and then click on the Firewall Settings button in the
editor panel. Click on the Prolog/Epilog tab and add the following commands in the Epilog window.

rates are in kbit/sec

RATE_DEFAULT=10000
RATE_HTTP=2000

tc qdisc del dev eth0 root >/dev/null 2>&1
tc qdisc add dev eth0 root handle 1: htb default 90
tc class add dev eth0 parent 1: classid 1:1 htb rate ${RATE_DEFAULT}kbit ceil ${RATE_DEFAULT}kbit
tc class add dev eth0 parent 1:1 classid 1:10 htb rate 1kbit ceil ${RATE_HTTP}kbit

Your configuration should now look like Figure 14.178.

Firewall Builder Cookbook

445

Figure 14.178. Classify Rule

While this example showed controlling bandwidth from a single host, you can also apply the same concepts
to a network firewall that provides traffic shaping for multiple systems on a network.

14.6. Useful Tricks

14.6.1. Using clusters to manage firewall policies on
multiple servers

In this recipe we are going to cover how to use Firewall Builder clusters to manage a single firewall policy
that gets deployed on multiple servers. An example of where you could use this would be managing a
shared firewall policy for a collection of web servers that are all providing the same service and should
have the same rules.

Normally the cluster feature is used to create high availability firewall pairs, but in this case we are going
to use it creatively to create a master firewall policy that gets deployed on multiple servers.

For this recipe, we are going to use the web farm example shown below. The example starts with two
servers running Linux with iptables should have identical firewall polices. We'll cover creating the fire-
walls and cluster and assigning rules to it. At the end we'll walk through adding a third server to the cluster.

Firewall Builder Cookbook

446

Figure 14.179. Server Configuration

On these servers we want to implement the following basic firewall rules.

• Allow system to commuicate to its own loopback interface

• Allow inbound HTTP and HTTPS from anywhere to the server

• Allow inbound SSH from a specific set of trusted subnets

• Allow outbound connectivity to port 8009 (jboss) to a group of application servers

Step 1 - Create Firewall Objects for Your Servers

To create a cluster, we first need to create the firewall objects that will be members of the cluster. Each
server is represented by a firewall object in Firewall Builder. Go through the New Firewall wizard and
create a firewall called web-01 with two interfaces. The first interface is the Ethernet interface "eth0" that
connects the server to the Internet and the second interface is the loopback interface "lo".

After you have created the firewall object, it should look like this in the object tree:

Figure 14.180. web-01 firewall object

By default, Firewall Builder sets the firewall object to route (forward) IP packets. Since this is a server
firewall we should disable IP forwarding on the host. Do this by double-clicking the firewall object and

Firewall Builder Cookbook

447

then click on Host OS Settings in the Editor Panel at the bottom. Change the setting for IPv4 Packet
Forwarding to Off.

Figure 14.181. Disable IP Forwarding

To create a second firewall object for web-02 you can use the Duplicate feature in Firewall Builder.

• Right-click web-01 firewall and select Duplicate -> place in library User

• Edit the name of the newly created firewall object to web-02

• Double-click web-02's IP object under the eth0 interface and set the IP address to 192.0.2.12 / 24

Step 2 - Create a new cluster

To create a new cluster right-click the Clusters folder in the object tree and select New Cluster. This will
launch the New Cluster wizard. Name the cluster (for example, web-servers), and select both web-01 and
web-02 to be members of the cluster. Since we are not using failover it does not matter which firewall
is set to Master.

Firewall Builder Cookbook

448

Figure 14.182. Creating a New Cluster

Click Next >

Since both servers use eth0 as the outside interface leave the interface mapping as is. If you have servers
with different interface names on your server, for example if one server uses eth0 and the other server uses
eth1, you can set the mapping here.

Firewall Builder Cookbook

449

Figure 14.183. Cluster Interface Mapping

Click Next >

To make the cluster interface easy to identify, update the label associated with interfaces eth0 and lo. Since
we are not running our servers as a high availability cluster with failover set the Failover protocol to None.

Firewall Builder Cookbook

450

Figure 14.184. Set Cluster Interface Configuration

Note

Make sure to update both the eth0 and lo interfaces.

Click Next >

Firewall Builder Cookbook

451

We want to create new rules for our cluster, so set the source of the cluster rules to be "do not use any,
I will create new policy and NAT rules".

Figure 14.185. Set the Source of the Cluster Rules

Click Finish

Once you are done you should see a new cluster object in the tree that looks like this:

Figure 14.186. New Cluster Object web-servers

Step 3 - Define Cluster Policy Rules

After you create the cluster, the policy object is automatically opened in the Rules Panel. Remember we
wanted both of our servers to have the following rules:

• Allow the system to commuicate to its own loopback interface

• Allow inbound HTTP and HTTPS from anywhere to the server

• Allow inbound SSH from a specific set of trusted subnets

• Allow outbound connectivity to port 8009 (jboss) to a group of application servers

After you configure these rules your policy should look like this:

Firewall Builder Cookbook

452

Figure 14.187. Set the source of the cluster rules

Note

Make sure to use the objects from the cluster when creating the rules. These objects will auto-
matically get translated to the correct object for the individual cluster members.

Step 4 - Compile and Install Rules

The next step is to compile and install the rules to our servers. When Firewall Builder compiles the cluster
it will generate a firewall script for each of the cluster members including substituting the cluster objects
used in the rules for the local object on the cluster member.

For example, the IP address for the eth0 cluster object is automatically translated to the correct address
for web-01 (192.0.2.11) and web-02 (192.0.2.12).

You can see this substitution by inspecting the generated file for web-01 after the compile is completed.
Note that the destination is set to the IP address of web-01's eth0 interface.

echo "Rule 0 (eth0)"
#
$IPTABLES -A INPUT -i eth0 -p tcp -m tcp -m multiport -d 192.0.2.11 --dports 80,443
\ -m state --state NEW -j ACCEPT

Modifying rules

Now that you have a cluster setup to generate firewall policies for each of the server firewalls it is easy to
make changes that affect all your servers. For example, to add a new rule to all members of the web-servers
cluster to allow ICMP from the Trusted Networks object to servers simply add the rule in the cluster policy
and compile and install it to the members.

Adding a New Server to the Cluster

To add a new server to the cluster, you first need to create the firewall object to represent the server.
You can do this manually, or you can follow the same duplication process we used to create the web-02
firewall object.

• Right-click web-02 firewall and select Duplicate -> place in library User

Firewall Builder Cookbook

453

• Edit the name of the newly created firewall object to web-03

• Click the Host OS Settings and disable IPv4 Packet forwarding

• Double-click web-03's IP object under the eth0 interface and set the IP address to 192.0.2.23 / 24

The next step is to add the new web-03 firewall object to the cluster.

Figure 14.188. Add the New web-03 Server to the web-servers Cluster

Repeat this process for the "lo" loopback interface. Remember the steps are:

• Double-click the interface named web-servers:eth0:members

Firewall Builder Cookbook

454

• Click the Manage Members button at the bottom of the Editor Panel

• Click to select the "lo" interface under the web-03 object

• Click the right arrow > button to add the interface to the cluster member list

• Click Ok

Installing the Firewall Policy on the New Server in the Cluster

To deploy the firewall policy on web-03 you need to compile and install the cluster policy. Since the
cluster policy hasn't changed we don't need to re-install the policy on web-01 or web-02 so we unselect
them from the install list.

Figure 14.189. Compile the Cluster Policy and Install on web-03

You can add and remove servers to the cluster as needed. Here's our configuration now that we have three
servers in the cluster all running the same firewall rules.

Figure 14.190. Cluster with Three Firewalls Sharing the Same Firewall Policy

Firewall Builder Cookbook

455

14.6.2. Creating Local Firewall Rules for a Cluster Mem-
ber

In the previous recipe, we showed how to use the Firewall Builder cluster object to create a single firewall
policy that gets installed on multiple servers. When we finished the cluster was configured with three
servers as shown below.

Figure 14.191. Cluster with Three Firewalls Sharing the Same Firewall Policy with
One Firewall Also Using Local Rules

In this recipe we will show how to create a set of local rules on one of the cluster members. Local rules
are evaluated in addition to the rules that are configured for the cluster.

For this example we will add a local rule to the web-03 server firewall allowing remote access to the server
via SSH from a trusted external vendor coming from a network defined as "Vendor X Network".

• Allow inbound SSH from network object "Vendor X Network"

The following steps assume that we are starting with the same configuration that the previous example
finished with.

Step 1 - Create a New Policy in the web-servers Cluster

Since we only want this policy applied to one of the servers in the cluster, not all of the cluster members,
we need to create a separate policy object to hold the local rules.

Firewall Builder Cookbook

456

In this example we name the new policy object "local_rules". The policy name can be any name you choose
except that it cannot be the same name as the policy that contains the main firewall rules for the cluster
which, by default, is 'Policy'.

Figure 14.192. New Policy in Cluster Oobject web-servers

After you are done, you should see the new policy named local_rules under the web-servers cluster object.

Firewall Builder Cookbook

457

Figure 14.193. Cluster Object web-servers with New Policy local_rules

Step 2 - Create a New Policy in the web-03 server Object

Next we need to create a policy object on the web-03 firewall using exactly the same name as we used
for the policy object on the web-servers cluster.

Firewall Builder Cookbook

458

Figure 14.194. New Policy in Firewall Object web-03

Note

You must use the same name for the policy on both the cluster object and the firewall object.

Step 3 - Define the Local Rule in the New Policy on the web-03 Fire-
wall

Remember, the rule we want to add only to web-03 server is:

Firewall Builder Cookbook

459

• Allow inbound SSH from network object "Vendor X Network"

When creating local rules use the interface objects of the firewall that the local rule is being configured
on. For our example we use the interface object of the web-03 firewall for the destination and interface
fields. After you configure the rule in the local_rules policy on web-03 the policy should look like this:

Figure 14.195. New Rule in Policy local_rules on Firewall Object web-03

Note

Make sure to configure this rule in the local_rules policy object on the web-03 firewall object.
You can see which firewall policy you are editing at the top of the Rules panel.

Step 4 - Set Up a Branching Rule in the Cluster Policy to Jump to
the Local Policy

For the rules in the policy 'local_rules' to be applied we need to setup a branching rule in the main policy
called 'Policy' to jump to the local_rules policy. You can define the branch rule anywhere in the policy, in
this example we are going to make the branch the first rule of the policy. This will ensure that the custom
rules defined on web-03 will be run first, then the rest of the rules for the cluster will be applied.

Firewall Builder Cookbook

460

Figure 14.196. New Branching Rule in the Main Policy on the Cluster Object web-
servers

Firewall Builder Cookbook

461

Note

Make sure you set the branch target to be the 'local_rules' object from the cluster object and not
one of the member firewalls.

After you have configured the branching rule in the main policy your rules should look like this.

Figure 14.197. Cluster Policy with Branch Rule on Top

Note

Not all firewall platforms support branching, you can find out more about branching in Sec-
tion 7.2.8.

Step 5 - Compile and Install Policy

Since changes were made to the web-servers cluster and web-03 objects we need to compile and install
the updated firewall rules to all cluster members.

When the rules are compiled, Firewall Builder includes the rules defined in the local_rules policy object
on the firewall cluster member if they exist. If no rules are found in the member's local_rules Firewall
Builder will include the rules from the cluster object's local_rules.

To see an example of this you can inspect the generated firewall script for the web-03 server. You can see
the new iptables chains for the local_rules policy in red.

echo "Rule local_rules 0 (eth0)"

$IPTABLES -N local_rules
$IPTABLES -N In_local_rules_0
$IPTABLES -A local_rules -i eth0 -p tcp -m tcp -s 198.51.100.0/24 \
 -d 192.0.2.13 --dport 22 -m state --state NEW -j In_local_rules_0
$IPTABLES -A In_local_rules_0 -j LOG --log-level info --log-prefix "RULE 0 -- ACCEPT "
$IPTABLES -A In_local_rules_0 -j ACCEPT
================ Table 'filter', rule set Policy

Rule 0 (global)

echo "Rule 0 (global)"

$IPTABLES -A OUTPUT -j local_rules
$IPTABLES -A INPUT -j local_rules
$IPTABLES -A FORWARD -j local_rules

Firewall Builder Cookbook

462

Note

The compiler will generate a warning for the web-03 firewall object since there is a policy object
named local_rules on the web-03. When both the cluster object and a member object have a policy
with the same name, if the member object's policy is not empty then the member's policy will be
used in place of the cluster object for that policy.

This results in the firewall web-03 having the following rules matching applied.

Figure 14.198. Firewall Rules Sequence for Traffic Destined to web-03

Note

All the other members of the cluster will have an empty rule chain created for local_rules. This
means incoming traffic will go through this empty chain first before being passed back to the
main rules defined in Policy.

You can also create custom rules on other members of the cluster using the same local_rules
policy name.

14.6.3. Another Way to Generate a Firewall Policy for
Many Hosts

This is a simplier, but less powerful and flexible, way to manage multiple hosts requiring the same firewall
policy.

Suppose you use Firewall Builder to generate a policy for the firewall running on a server. How can
Firewall Builder help you generate a policy for it and how can you do it if you have hundreds of servers
like that?

For example, you could run a firewall locally on the web server that should be accessible to anyone on
protocol HTTP, but oth er protocols used to publish content and manage the machine should be open only to
a limited number of IP addresses. To configure such a firewall running on a host in Firewall Builder, create
a firewall object and configure it with interfaces as usual. You will need to create a loopback interface and
Ethernet (if it's a Linux machine, then it will be "eth0"). This firewall object now represents your se rver
with a firewall running on it. You can then build a policy. Most likely you won't need NAT rules there,

Firewall Builder Cookbook

463

although there are some ca ses where NAT rules may be useful too. Compile the policy and transfer it to
the server using the Firewall Builder installer as usual. That's it.

This procedure gets really tiresome if you need to repeat it many times. This is so if you have a whole
farm of servers and n eed to generate and install a firewall policy on each one of them. The following
trick helps simplify the process if the servers are ve ry similar (like a web servers farm) and use identical
firewall policies.

You need to create a firewall object as described above, except its interface "eth0" should be marked as
"dynamic". Do not ad d an address object with IP address to it, just make it look like it gets IP address
dynamically. Even if in reality it is configured s tatically, you make Firewall Builder believe it is dynamic.
In this case, the generated firewall script will determine the actual addre ss of the interface and then use
it in the policy rules, which allows you to run the same script on many servers with different address es.
You will need to copy the firewall script from the management workstation to the servers by hand or by
using some custom script. Th is should not be difficult though if you use SSH and RSA or DSA keys.

14.6.4. Using Empty Groups
This example shows how the option "Ignore empty groups" can be used to build a rule controlling access
to or from an often-changing group of computers. Suppose we need to set up a rule to control access to or
from a group of computers. In principle this should be easy: we create a Host object for each computer,
then create a group and put all these Host objects in it. We can use this group in the Source or Destination
of the policy rule to achieve our goal. If we ever need to add a new machine to the control list, we create
a new host object and add it to the group; if we need to remove the machine from the list, we just remove
it from the group. But what should happen if after the last machine has been removed the group becomes
empty? If the empty group is in the Source of the rule, shouldn't the compiler treat it as Any? This is
confusing, to say the least.

Here is how it works in Firewall Builder. The behavior of the compiler is controlled by the Ignore empty
groups in rules checkbox in the "Compiler" tab of the Firewall Settings dialog. If this checkbox is off,
then compiler treats empty groups as an error and stops processing of the ruleset as soon as it encounters
such group. This is the default setting. However, if this checkbox is on, then compiler simply removes
empty group from the rule and continues processing. This makes sense, since an empty group defines no
objects and if the rule element has some other objects in it, removing an empty group does not change its
meaning. It becomes tricky when the empty group is the only object in the rule element though. In this
case, removing the group from the rule element makes it empty, which is equivalent to Any. All of the
sudden, instead of controlling access to or from a group of hosts, the rule expands its action to any host. To
avoid this unexpected side-effect, compiler drops a rule if rule element becomes empty after the last empty
group has been removed. Again, it works this way only if the checkbox "Ignore empty groups" is on.

For example, this feature can be used to set up a rule to control Internet access from a number of student
computers. Suppose some students may be denied access once in a while, in which case their machine is
removed from the group. If at some point of time all machines were removed from the group, the compiler
would simply ignore this rule instead of inadvertently creating a hole in the policy.

14.6.5. How to use Firewall Builder to configure the fire-
wall using PPPoE

If your Internet connection uses the PPPoE protocol, then your firewall should be configured with interface
ppp0.

With PPPoE, the connection is established using the PPP protocol that works on top of the usual Ethernet.
As the result, the firewall gets interface ppp0 in addition to the interfaces eth0 and eth1 that correspond

Firewall Builder Cookbook

464

to its "normal" physical network adapters. Here is how you can use Firewall Builder to configure such a
firewall (assuming interface eth0 is connected to the DSL link and eth1 is connected to internal LAN):

1. Create a firewall object in the GUI.

2. Add interfaces ppp0 and eth1. You can simply skip eth0 as it does not have an IP address and never
sees IP packets.

3. If you have a static IP address with your Internet connection, mark ppp0 as "static" and add an address
object to it. Configure the address object with the IP address.

4. If your Internet connection uses dynamic IP address, mark ppp0 as "dynamic" and do not add an address
object to it. Create a script /etc/ppp/ip-up to restart the firewall every time IP address of ppp0 changes.

465

Chapter 15. Troubleshooting
This chapter provides tips for troubleshooting problems with the program.

15.1. Build Issues

15.1.1. autogen.sh Complains "libfwbuilder not installed"
When compiling from source, autogen.sh complains "libfwbuilder not installed"

As of version 0.9.6 the code has been split into three major parts: API, GUI and policy compilers. You
need to download, compile and install API for the rest to compile. The API comes in a separate source
archive called libfwbuilder-0.10.0.tar.gz. Compile and install it as usual, using "./autogen.sh; make; make
install" procedure.

15.1.2. "Failed dependencies: ..." when installing RPM
Trying to install Firewall Builder RPM but I get a bunch of errors "Failed dependencies: ...". What do
I need to do ?

You need to install prerequisite libraries. See the list of RPMs in the appendix.

Note

Do not use options "--force" or "--nodeps" when you install fwbuilder RPMs. If rpm complains
about unsatisfied dependencies, this means your system is missing some libraries, or the wrong
versions are installed. Forcing the package install won't fix that; most likely it will fail in one
way or another.

15.2. Program Startup Issues

15.2.1. "fwbuilder: cannot connect to X server local-
host:0.0"

The Firewall Builder binary does not start. Error "fwbuilder: cannot connect to X server localhost:0.0"
or similar

The Firewall Builder GUI is an X application, that is, it needs X server to display it on the screen. The
program determines how to connect to the X server using environment variable DISPLAY; you probably
do not have this environment variable if you get an error like that. The simplest way to avoid this problem
is to start fwbuilder from the shell window in Gnome or KDE environment.

It may also be that the environment variable DISPLAY is set, but the program fwbuilder cannot connect
to the X server. In this situation you won't be able to run any application using X, check if that's the case
by trying to start "xclock". This may be happening because of many different reasons, such as X server is
not running, X authentication failure, or DISPLAY variable reassigned its value by the shell login script
or many others. This problem falls outside the scope of this document, please search on the Internet for
the answer. Here are few URLs to make troubleshooting easier:

Troubleshooting

466

• http://www.openssh.org/faq.html
• http://en.tldp.org/HOWTO/XDMCP-HOWTO/ssh.html
• http://en.tldp.org/LDP/intro-linux/html/sect_10_03.html

15.2.2. "fwbuilder: error while loading shared libraries:
libfwbuilder.so.0: cannot load shared object file: no such
file or directory."

fwbuilder binary does not start. Error "fwbuilder: error while loading shared libraries: libfwbuilder.so.0:
cannot load shared object file: no such file or directory."

Then the GUI binary (fwbuilder) cannot find API library libfwbuilder. If you are using our binary packages,
then make sure you download and install package called libfwbuilder. If you compiled from sources, then
perhaps you installed libfwbuilder with default prefix /usr/local/, therefore library went to /usr/local/lib.
Dynamic linker ldd cannot find it there.

You have the following options:

• create environment variable LD_LIBRARY_PATH with value /usr/local/lib and run fwbuilder from
this environment.

• add /usr/local/lib to the file /etc/ld.so.conf and run ldconfig so it will rescan dynamic libraries and add
them to its cache.

• recompile libfwbuilder and fwbuilder with prefix /usr/, this will install libfwbuilder.so.0 in /usr/lib. ldd
will find it there without any changes to environment variables or /etc/ld.so.conf file. To change prefix
you need to run autogen.sh with command line parameter "--prefix=/usr". Do this both for libfwbuilder
and fwbuilder.

15.2.3. "fwbuilder: error while loading shared libraries: /
usr/local/lib/libfwbuilder.so.8: cannot restore segment
prot after re loc: Permission denied"

fwbuilder binary does not start. Error "fwbuilder: error while loading shared libraries: /usr/local/lib/
libfwbu ilder.so.8: cannot restore segment prot after reloc: Permission denied"

The problem is caused by SELinux security settings, to work around it try the following command:

chcon -t texrel_shlib_t /usr/lib/libfwbuilder.so*

15.3. Firewall Compiler and Other Runtime Is-
sues

15.3.1. Firewall Builder Crashes
Firewall Builder or Policy Compiler Crashes

Please file a bug on Sourceforge. Provide information we might need to fix the problem. See the Firewall
Builder Contact [http://www.fw builder.org/contact.html] page for links to bug tracking and instructions
for f iling bugs.

http://www.fw builder.org/contact.html
http://www.fw builder.org/contact.html
http://www.fw builder.org/contact.html

Troubleshooting

467

15.3.2. Older Data File Cannot Be Loaded in Firewall
Builder

Data file created in the older version of fwbuilder cannot be loaded in the latest one

Sometimes this happens when you skip several versions trying to upgrade the program. There used to be
a bug in the upgr ade procedure somewhere around version 1.0.4 which broke automatic upgrades from
versions before 1.0.4 to versions after that. If this happens to you, upgrade your data file using script fwb-
upgrade.sh that you can find in Contrib/Scripts area on our SourceForge site.

15.3.3. "I/O Error" While Compiling policy. No Other Er-
ror.

"I/O Error" while compiling policy. There is no other indication of error though.

Did you install package with corresponding compiler? Our pre-built compilers come in a separate RPMs
named like this: fw builder-ipt-2.0.2-1rh9.i386.rpm

Check if compiler dumped core. If you can't find it, you may try to run compiler manually, providing the
following command-line parameters:

$ fwb_ipt -f path_to_objects.xml firewall_object_name

All policy compilers have the same command line format.

15.3.4. ios_base::failbit set on Windows

Policy compiler stops with an error ios_base::failbit set on Windows

It looks something like this:

fwb_ipfw -f C:/Documents and Settings/User/data.fwb -d C:/Documents
and Settings/User -r C:\FWBuilder\resources fw

 Compiling policy for fw ...
 Detecting rule shadowing
 Begin processing
 Policy compiled successfully
ios_base::failbit set
--

First of all, check available free disk space. Also check if the output file (fw.fw) is opened in another
program while compiler is running. That is, if you looked at it after the previous compiler run and opened
it in Notepad, it becomes locked and compiler won't be able to overwrite it with the new copy until you
close Notepad.

15.3.5. "Cannot create virtual address NN.NN.NN.NN"

Policy compiler stops processing rules with error message "Cannot create virtual address NN.NN.NN.NN"

Troubleshooting

468

This happens when you are using an option "Create virtual addresses for NAT rules". The problem is that
policy compiler needs to be able to determine interface of the firewall to assign virtual address to. In order
to do that it scans all interfaces trying to find subnet requested NAT address is on. Sometimes the firewall's
interface has an address which belongs to a different network than the NAT address specified in the rule;
in this case, the compiler cannot identify an interface and aborts.

The NAT rule still can be built without "-i" or "-o" option, but automatic assignment of virtual address is
impossible. You need to turn off option "Create virtual addresses for NAT rules" in the tab "Firewall" of
firewall dialog and configure this address manually.

15.4. Troubleshooting installing policy on the
firewall

15.4.1. Plink.exe fails while trying to activate the firewall
policy with an error 'Looking up host "" Connecting to
0.0.0.0 port 22'

This only happens when Firewall Builder GUI runs on Windows and uses pscp.exe and plink.exe to transfer
generated firewall script and activate it on the firewall machine. The utilities pscp.exe and plink.exe are
part of the PuTTY package by Simon Tatham http://www.chiark.greenend.org.uk/~sgtatham/putty/.

The Firewall Builder GUI launches the plink.exe utility to log in to the firewall machine and activate fire-
wall script there. It composes plink.exe command line using ip address of the firewall and adds command
line option "-ssh" to force plink.exe to use ssh protocol. Plink.exe and GUI ssh client putty.exe share the
same configuration stored in windows registry and if default settings configured in putty.exe set default
protocol to "Serial" as shown in the screenshot below, plink.exe seems to ignore command line option "-
ssh" and fails with an error 'Looking up host "" Connecting to 0.0.0.0 port 22'. Just set the default protocol
to "ssh" using the putty configuration dialog.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Troubleshooting

469

Figure 15.1.

15.5. Running the Firewall Script

15.5.1. Determining which rule caused an error

I get an error when I run the generated script. How can I figure out which rule causes this error?

Troubleshooting

470

You can turn debugging on (look for a checkbox in the tab "Firewall" in firewall dialog). This simple
generates firewall script with shell option "-x" so it will print all commands while executing. This way
you can see which command causes the error and trace it back to the policy rule.

15.5.2. "ip: command not found"
(Linux / iptables only) I've generated script for iptables firewall using Firewall Builder, but when I run it
I get an error "ip: command not found". What is this command for and what package should I install?

This tool is part of the package 'iproute'; we use it to manage virtual IP addresses needed for some NAT
rules.

15.5.3. I get the following error when I run generated
script for iptables firewall: "iptables v1.2.8: can't initial-
ize iptables table 'drop': Table does not exits (do you
need to insmod?) Perhaps iptables or your kernel needs
to be upgraded."

You get this error because you used the option "Log all dropped packets" (there is a checkbox in the
'Firewall' tab). This option requires the "dropped" patch from patch-o-matic. You either need to turn this
option off, or apply the corresponding patch and recompile both kernel modules and command-line utilities
for iptables.

15.5.4. "Interface eth0 does not exist"
You are trying to execute an iptables script generated by Firewall Builder but get an error message "In-
terface eth0 does not exist" or similar.

There are several conditions that may cause this error.

The script generated by Firewall Builder uses the tool /sbin/ip to verify configuration of the firewall inter-
faces and make sure that interfaces of the real firewall machine correspond to the interface objects created
in the GUI. You may get this error if the tool /sbin/ip is not installed on your system. All modern Linux
distributions come with the package iproute2 which includes /sbin/ip; check if iproute2 is installed and /
sbin/ip exists.

Another case when you may encounter this error is when firewall script is executed prematurely during the
boot sequence and interface really does not exist at that time. For example, interface ppp0 is created only
when the system is configured for PPP and the daemon pppd is running. If the firewall script is activated
before the daemon started during the boot sequence, interface ppp0 is not there yet, which leads to this
error. Make sure you start firewall script after all interfaces has been initialized.

15.5.5. "Interface eth0:1 does not exist"
My firewall has virtual interface eth0:1. In fwbuilder I added the interface, however, when I want to apply
the new rules I get the error "Interface eth0:1 does not exist"

eth0:1 is not a real interface on Linux, it is just a label for a second IP address of the interface eth0. One way
to solve this is not to create it in the OS (remove file /etc/sysconfig/network-scripts/ifcfg-eth0:1 and restart
networking), but rather add its IP address in the Firewall Builder GUI as a second address to interface eth0.

Troubleshooting

471

In any case you should not add interface "eth0:1" in fwbuilder because it really does not exist. Iptables
will not recognize this interface either, so even if Firewall Builder did allow you to use it, you would get
an error from iptables. You see "eth0:1" in the output of ifconfig only because ifconfig has been modified
on Linux to show virtual IP addresses as pseudo-interfaces. The command "ip addr show" will reveal that
the eth0:1 is really a label on the second IP address of eth0.

15.5.6. Script fails to load module nf_conntrack

Generated script fails to load module nf_conntrack when it is executed on the firewall

This problem is specific to iptables. The answer below has been written in September 2006, most likely the
situation and relevant recommendations will change as the module nf_conntrack matures and gets wider
deployment.

Here is an example of an error message:

FATAL: Error inserting nf_conntrack_ipv4
(/lib/modules/2.6.13-15.11-default/kernel/net/ipv4/netfilter/nf_conntrack_ipv4.ko):
Device or resource busy

Here is the link [http://www.netfilter.org/projects/patch-o-matic/pom-extra.html#pom-ex-
tra-nf_conntrack] to the nf_conntrack page in patch-o-matic catalog. Here is the link [http://
lists.netfilter.org/piperma il/netfilter-devel/2006-July/024879.html] to the discussion on netfilter-devel
mailing list.

It appears you can load either ip_conntrack or nf_conntrack but not both at the same time since
nf_conntrack is a replacement for ip_conntrack. As of this writing, nf_conntrack does not support NAT
just yet and is marked as having status "TESTING" on the patch-o-matic catalog page.

This actually represents a problem for fwbuilder. I would like to avoid having to write extensive GUI to
let user choose which modules they want to load. One of the reasons is that the GUI may be working on
one machine, while generated firewall script will be executed on another. In this situation the GUI cannot
determine which modules are available on the firewall. Currently generated script simply tries to load all
modules but it aborts if it detects an error in the command that does it (modprobe).

Until a better solution is found, you would probably need to remove the module that conflicts with others
or disable the feature that makes the generated script load modules and write your own script to load
modules you need. You can for example add commands to load modules explicitly to the "prolog" section
of the generated script.

15.6. RCS Troubleshooting

15.6.1. Error adding file to RCS

Error adding file to RCS: Fatal error during initial RCS checkin of file

You will get this error if you do not have RCS set up on your system. To resolve it, install and configure
RCS on the w orkstation running Firewall Builder.

http://www.netfilter.org/projects/patch-o-matic/pom-extra.html#pom-extra-nf_conntrack
http://www.netfilter.org/projects/patch-o-matic/pom-extra.html#pom-extra-nf_conntrack
http://www.netfilter.org/projects/patch-o-matic/pom-extra.html#pom-extra-nf_conntrack
http://lists.netfilter.org/piperma il/netfilter-devel/2006-July/024879.html
http://lists.netfilter.org/piperma il/netfilter-devel/2006-July/024879.html
http://lists.netfilter.org/piperma il/netfilter-devel/2006-July/024879.html

Troubleshooting

472

15.6.2. "Error checking file out: co: RCS file c:/fw-
builder/RCS/file.fwb is in use"

I cannot open my data file, I get error "Error checking file out: co: RCS file c:/fwbuilder/RCS/file.fwb
is in use"

A catastrophe (e.g. a system crash) can cause RCS to leave behind a semaphore file that causes later
invocations of RCS t o claim that the RCS file is in use. To fix this, remove the semaphore file. A semaphore
file name typically begins with , or ends with _.

If not that, then it could be another manifestation of bug #1908351

See if there is a file with the name starting and ending with a comma in the RCS directory (like ",file.fwb,").
The file should have length of zero bytes. This file is a lock file, it is created and deleted by RCS tools.
Bug 1908351 caused this lock file t o be left behind. When that happens, ci won't check file in because
it thinks another copy of ci is already running. Likewise, co won't check the file out for the same reason.
If such file exists (zero bytes in length and name starting or ending with a comma), just dele te it and try
to check your data file out again.

15.6.3. "Error checking file out:"
I cannot open my data file, I get error "Error checking file out:"

Such non-descriptive error message is usually caused by hard unrecoverable errors experienced by RCS
tools. Unfortunately these tools not always report errors in the best way possible and when this happens,
Firewall Builder GUI cannot provide any better di agnostics than it gets from the tool. Such poor diagnos-
tics of errors happens more frequently on Windows than on other platforms.

Here are few things to check and try:

• First of all, check file permissions. The data file (.fwb) should be read-only. RCS repository file (.fwb,v)
should also be read-only. Repository file may be located in subdirectory RCS but that depends on the
OS. It may be located in the same directory with corresponding data file (.fwb) as well.

• Try to check the file out manually to see if you can get better diagnostics:

If you use Windows, start MS DOS window and in it navigate to the folder where you keep your files,
then execute the fo llowing command:

c:\FWBuilder\co.exe -l filename.fwb

If it checks the file out successfully, it just prints revision number and 'done'. Otherwise it will print
some error.

After you do that, you need to check the file in to RCS again. Do it like this:

c:\FWBuilder\ci.exe -u filename.fwb

Since the file hasn't changed, it should just check it in without asking you for the RCS log record. If
you can success fully check it out and then check it in again from the command line, then the GUI
should work too.

On Linux, *BSD and Mac OS X the process is exactly the same, except for the path to the checkout
and checkin commands:

Troubleshooting

473

To check the file out use

co -l filename.fwb

To check the file in use

ci -u filename.fwb

15.7. Issues after new policy activation

15.7.1. Cannot access only some web sites
Can access most web sites through the firewall just fine, except for a few.

The browser would state "waiting for www.somesite.com" for a while and then time out when you connect
to one of these sites.

This might be caused by a MTU problem if you are on a DSL connection using PPPoE. Here are couple
of useful pages that describe the problem in details:

• http://www.dslreports.com/tweaks/MTU
• http://www.internetweekly.org/llarrow/mtumss.html

If your firewall runs iptables you can use option "Clamp MSS to MTU" in the firewall settings dialog to
work around it.

For the PF firewalls similar option is called "Enforce maximum MSS" and is located in the "Scrub rule
options" tab of firewall settings dialog. It allows for setting MSS value of TCP sessions opened through the
firewall; try values between 1460 or 1464 (1464 is the maximum MSS value that can be used on PPPoE
connections without fragmentation).

There is no way to change MSS value on the ipf, ipfw and pix firewalls. If your firewall is one of these,
you may need to change MTU on your workstation. See links above for recommendations on how to do it.

15.7.2. Firewall becomes very slow with new policy
You compiled and started firewall policy script and then noticed that seemingly every operation on the
firewall takes a lot longer than before. For example, it takes forever to log into it using telnet or ssh,
different services take a few minutes to start or won't start at all.

Most likely the firewall needs to be able to do DNS lookups but can't. Look in /etc/resolv.conf for the
address of the name server it is using and make sure you have a rule in the policy to permit connections to
it. Use firewall object in "Source", the name server object in "Destination" and a standard service object
group "DNS" in the Service field.

If your firewall runs caching name server and file /etc/resolv.conf lists "127.0.0.1" as a name server ad-
dress, then you need to permit firewall to talk to itself. Here is how such /etc/resolv.conf file looks like:

 domain your_domain.com
 nameserver 127.0.0.1

You need to add a rule with the firewall object in both Source and Destination fields and the service object
group "DNS" in the Service field to the loopback interface. This rule permits the firewall machine to

Troubleshooting

474

communicate with the name server running on it, but you need another rule to permit the name server to
send DNS queries and receive answers. This rule should have the firewall object in Source, Destination
should be set to "any" and the same standard service object group "DNS" should be used in the Service
element. Now not only firewall can query the name server process running on it, but the process in turn
can send queries to other name servers on the Internet and receive answers.

Here is the rule that should be added to the loopback interface:

Figure 15.2. DNS on loopback

Here is the rule that permits the name server process to communicate with name servers on the Internet:

Figure 15.3. DNS on to name servers

Depending on your policy design, you may want to permit all services rather than just DNS on the loopback
interface because there are many other processes that need to be able to communicate with the same host,
such as X11, RPC and others. The dedicated firewall machine should not run anything unnecessary, so
there you may experiment with limiting the number of services in the rule on loopback the interface. On
the other hand, if you use fwbuilder to protect a server that runs many different services, permitting any
service on the loopback may be a simpler solution.

The next rule permits processes running on the firewall to communicate with other processes running on
the same machine on all protocols:

Figure 15.4. Any to any on firewall

15.7.3. X won't start on a server protected by the firewall
You've built a firewall script to protect a server, but after you ran the script, X (KDE, Gnome) won't start
anymore.

The reason for this is the same as in the DNS problem -- you need a rule to permit processes to communicate
with other processes running on the same machine. This can easily be achieved with the following rule
added to the loopback interface:

Figure 15.5. Any to any on firewall

Troubleshooting

475

15.7.4. Cannot access Internet from behind firewall
I compiled and activated firewall policy, but workstations behind the firewall still cannot access the In-
ternet.

Here are few troubleshooting steps:

• Make sure you compiled, then installed and activated firewall policy. Were there any errors during
compile and activation?

• check if ip forwarding is turned on (pull down menu in the "Network" tab of the firewall object dialog).
• try to ping hosts on the Internet by their IP address, not their name. This helps isolate DNS problems. If

you can ping by address but can't ping by name, then you need to add policy rules to permit DNS queries.
• Look in firewall's log for records indicating that it drops packets. Error in the policy design can cause

it to block connections that you really want to go through.
• Use option "Log everything" to make all rules generate log entries, this sometimes helps pinpoint a rule

that drops packets.

Things to check in the policy:

• Check if you have a NAT rule if your protected network is using "private" IP addresses.
• If the NAT rule is there, then you may need to add a policy rule to actually permit connections from

the protect network.
• In case when NAT is not used, check if the routing is configured properly. If your firewall separates

subnets A and B, and you are trying to connect from the host on subnet A to the host on subnet B, then
both hosts should have routing to the opposite network. Host on the net A needs a route for the net B,
pointing at the firewall. Similarly, host on the net B needs a route for the net A, also pointing at the
firewall. If one (or both) host has a default route pointing at the firewall, then it won't need a special
route for another network.

15.7.5. Installing updated firewall policy seems to make
no difference

I compiled and activated firewall policy, but my tests seem to show no difference. If I add a rule to block
some protocol, it remains permitted for some reason.

Here are few troubleshooting steps:

First of all, make sure you compile the right firewall object and install on the right firewall machine, the
same one you use for testing. It is all too easy to mix them up if you have several firewalls. Another case
when this happens often is when you work on the firewall replacement and have both old and new firewall
machines running simultaneously. You may be pushing updated policy to the new machine, while traffic
is still routed through the old one.

If you test by adding a rule to deny some protocol and then trying to connect with this protocol, but it
remains permitted, check that you do not have any rules that permit it above the one you've added for
testing. You can use "Find" function (Section 5.7) in Firewall Builder GUI to find all uses of any service
object. Keep in mind that there could be two objects with different names but the same port and protocol
configuration. You can search for objects by their name, tcp/udp port number, ip address etc.

If you use ssh access to test rules by adding a rule that denies ssh access to the firewall, keep in mind that
automatic rule may override it. The automatic rule is added using checkbox "Always permit ssh access
from the management workstation" in the firewall settings dialog. See Section 10.5.8.

Troubleshooting

476

Pay attention to the output that appears in the progress window of the policy installer when you install and
activate updated policy. Iptables script generated by fwbuilder always prints the following information
when it is activated (here is an example):

Activating firewall script generated Mon Aug 09 17:22:11 2010 by vadim
Running prolog script
Verifying interfaces: eth0 eth1 lo
Rule 0 (NAT)
Rule 0 (eth0)
Rule 1 (lo)
Rule 2 (global)
Rule 3 (global)
Rule 4 (global)
Rule 5 (global)
Rule 6 (global)
Rule 7 (global)
Rule 8 (global)
Rule 9 (global)
Running epilog script

Do you see the "Activating firewall script ... " line in the progress output of the installer? If not, you might
be running different script on the firewall. Compare the date and time reported by the script, could it be
too old ?

Note

Output shown above appears in the progress output of the installer when you run it with both
"Quiet" and "Verbose" options turned off. Running it with "quiet" turned on suppresses these
lines and running it in verbose mode produces a lot more output.

Another reason updated policy may not be activated is if you tried an external activation script previously
but perhaps forgot about it. In this case the installer will be running this script instead of newly generated
firewall script. You can configure alternative command that installer should execute on the firewall in the
"Installer" tab of the firewall settings dialog. If this option is set to some script on the firewall machine and
this script does not in turn call script generated by fwbuilder, you might be reloading the same firewall
policy every time you install. This is just another thing to check.

15.8. Routing Rules Issues

15.8.1. Compile fails with dynamic or point-to-point inter-
faces

Compile fails with dynamic or point-to-point interfaces

If you have interfaces with a dynamic address or a point-to-point address and you try to insert a routing
rule for the default gateway, compilation might fail, stating "gateway not reachable". Typically this is the
case for DSL dial-up links. Solution: leave the gateway field empty. Just specify the interface.

477

Chapter 16. Appendix
This chapter provides additional information that may be useful to Firewall Builder users.

16.1. iptables modules

16.1.1. Installing the iptables ipset Module Using xta-
bles-addons

Instructions for installing the iptables ipset module using xtables-addons.

On Ubuntu, the module ipset and corresponding command-line tools are packaged in either package ipset
and ipsed-module-source or as part of an xtales-addons bundle. The latter includes many other useful
iptables modules and tools besides ipset. You can use just ipset packages if you do not need other modules;
otherwise, it probably makes sense to install xtables-addons. These packages are motually exclusive, that
is, if you install ipset and ipset module packages and then later will try to install xtables-addons to get
some other module, you are going to have to deinstall ipset packages to avoid conflict. The instructions
below illustrate method using xtables-addons.

First, you need to obtain the ipset module source. You can do this by running the commands shown below.
Note: you will need to be root or have sudo access to run these commands. Depending on what is already
installed on your system you might see slightly different command outputs.

Two packages xtables-addons that we need to install have the following descriptions

aptitude search xtables
p xtables-addons-common - Extensions targets and matches for iptables [tools, libs]
p xtables-addons-source - Extensions targets and matches for iptables [modules sources]

We need to install both using the following commands (as root):

aptitude install xtables-addons-common
aptitude install xtables-addons-source

Next, you will need to build the iptables modules installed by the package xtables-addons-source from
source. We use the convenient module-assistant for this. You will see a window pop-up that displays the
status of the module being built.

module-assistant build xtables-addons

This command builds binary package with all the modules but does not automatically install it. You need
to install it manually. The command prints module file name and path at the end of its run., like this:

root@lucid:~# module-assistant build xtables-addons
Extracting the package tarball, /usr/src/xtables-addons.tar.bz2, please wait...
Done with /usr/src/xtables-addons-modules-2.6.32-22-generic-pae_1.21-1+2.6.32-22.36_i386.deb .

Appendix

478

Package name is "/usr/src/xtables-addons-modules-2.6.32-22-gener-
ic-pae_1.21-1+2.6.32-22.36_i386.deb", we can install it using dpkg -i command:

dpkg -i \
 /usr/src/xtables-addons-modules-2.6.32-22-generic-pae_1.21-1+2.6.32-22.36_i386.deb

Command line tool ipset was installed previously as part of the xtables-addons-common package.

Your ipset module installation should now be complete. To confirm that the installation was successful
try running the following commands.

fwbuilder@guardian:~$ sudo ipset --version
ipset v4.1, protocol version 4.
Kernel module protocol version 4.
fwbuilder@guardian:~$
fwbuilder@guardian:~$ sudo ipset -N test iphash
fwbuilder@guardian:~$
fwbuilder@guardian:~$ sudo ipset --list
[sudo] password for fwbuilder:
Name: test
Type: iphash
References: 0
Default binding:
Header: hashsize: 1024 probes: 8 resize: 50
Members:
Bindings:

fwbuilder@guardian:~$ sudo ipset -X test
fwbuilder@guardian:~$ sudo ipset --list

If something did not work right, the command "ipset --version" will print an error message. One typical
problem is when kernel module was not compiled and installed or could not be loaded. In this case, this
command prints something like this:

ipset --version
ipset v4.1, protocol version 4.
FATAL: Could not open '/lib/modules/2.6.32-22-generic-pae/extra/xtables-addons/ipset/ip_set.ko': No such file or directory
ipset v4.1: Couldn't verify kernel module version!

16.1.2. Installing the iptables ipset module

On some versions of Ubuntu, including Lucid (and others?), the ipset tools included with xtables-addons
does not properly suppo rt the ipset setlist set type which Firewall Builder relies on. Here are instructions
for installing only the iptables ipset modu le and tools.

First, you need to get the ipset module source. You can do this by running the commands shown below.
Note: you will need to be root or have sudo access to run these commands. Depending on what is already
installed on your system you might see slightly different command outputs.

fwbuilder@guardian:~$ sudo aptitude install ipset-source

Appendix

479

Next, you will need to build the ipset module from source. We use the convenient module-assistant for
this. You will see a window pop-up that displays the status of the module being built.

fwbuilder@guardian:~$ sudo module-assistant build ipset
Extracting the package tarball, /usr/src/ipset.tar.bz2, please wait...
Done with /usr/src/ipset-modules-2.6.32-21-generic-pae_2.5.0-1+2.6.32-21.32_i386.deb .

Once this is complete you need to install the debian package that was created by module-assistant.

fwbuilder@guardian:~$ sudo dpkg -i \
/usr/src/ipset-modules-2.6.32-21-generic-pae_2.5.0-1+2.6.32-21.32_i386.deb

Now you need to install the ipset tools.

fwbuilder@guardian:~$ sudo aptitude install ipset

Your ipset module installation should now be complete. To confirm that the installation was successful
try running the following commands.

fwbuilder@guardian:~$ sudo ipset --version
ipset v2.5.0 Protocol version 2.
fwbuilder@guardian:~$
fwbuilder@guardian:~$ sudo ipset -N test iphash
fwbuilder@guardian:~$
fwbuilder@guardian:~$ sudo ipset --list
[sudo] password for fwbuilder:
Name: test
Type: iphash
References: 0
Default binding:
Header: hashsize: 1024 probes: 8 resize: 50
Members:
Bindings:

fwbuilder@guardian:~$ sudo ipset -X test
fwbuilder@guardian:~$ sudo ipset --list

	Firewall Builder 5 User's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Introducing Firewall Builder
	1.2. Overview of Firewall Builder Features

	Chapter 2. Installing Firewall Builder
	2.1. RPM-Based Distributions (Red Hat, Fedora, OpenSUSE, and Others)
	2.2. Ubuntu Installation
	2.3. Installing FreeBSD and OpenBSD Ports
	2.4. Windows Installation
	2.5. Mac OS X Installation
	2.6. Compiling from Source

	Chapter 3. Definitions and Terms
	Chapter 4. Firewall Builder GUI
	4.1. The Main Window
	4.2. GUI Menu and Tool Bars
	4.2.1. File Menu
	4.2.2. Edit Menu
	4.2.3. View Menu
	4.2.4. Object Menu
	4.2.5. Rules Menu
	4.2.6. Tools Menu
	4.2.7. Window Menu
	4.2.8. Help Menu
	4.2.9. Object Context Menu
	4.2.10. Tool Bar

	4.3. Object Tree
	4.3.1. Using Subfolders to Organize Object Tree
	4.3.2. Filtering the Object Tree
	4.3.3. Object Attributes in the Tree
	4.3.4. Creating Objects

	4.4. Undo and Redo
	4.4.1. Undo Stack

	4.5. Preferences Dialog
	4.6. Working with Multiple Data Files

	Chapter 5. Working with Objects
	5.1. Types of Objects
	5.2. Addressable Objects
	5.2.1. Common Properties of Addressable Objects
	5.2.2. The Firewall Object
	5.2.2.1. Creating a Firewall Object Manually
	5.2.2.2. Creating a Firewall Object Using a Preconfigured Template
	5.2.2.3. Creating a Firewall Object Using SNMP Discovery
	5.2.2.4. Editing a Firewall Object
	5.2.2.4.1. Basic Firewall Controls
	5.2.2.4.2. Host OS Settings Dialog
	5.2.2.4.3. Firewall Settings Dialog

	5.2.3. The Cluster Object
	5.2.4. Editing Rule Set Objects
	5.2.5. Interface Object
	5.2.5.1. More about Security Levels and Network Zones
	5.2.5.2. Using Interface Objects in Rules
	5.2.5.3. Using Interface Object with Dynamic Address in Rules
	5.2.5.4. Using Interface Object in Rules of Bridging iptables Firewall

	5.2.6. IPv4 Address Object
	5.2.6.1. IPv4 Address Object When Used as an Address of an Interface
	5.2.6.2. IPv4 Address Object When Used as a Stand-Alone Object

	5.2.7. IPv6 Address Object
	5.2.7.1. IPv6 Address Object When Used as an Address of an Interface
	5.2.7.2. IPv6 Address Object When Used as Stand-Alone Object

	5.2.8. Attached Network Objects
	5.2.9. Physical Address Objects
	5.2.9.1. Using The Physical Address Object in Policy Rules

	5.2.10. Host Object
	5.2.10.1. Creating a Host Object
	5.2.10.2. Editing a Host Object
	5.2.10.3. Using a Host Object in Rules
	5.2.10.4. Using Objects With Multiple Addresses in the Policy and NAT Rules

	5.2.11. IPv4 Network Object
	5.2.12. IPv6 Network Object
	5.2.13. Address Range Object
	5.2.14. Address Tables Object
	5.2.14.1. Using Address Tables Objects with iptables IP Sets

	5.2.15. Special-Case addresses
	5.2.15.1. Broadcast and Multicast Addresses, iptables Firewall
	5.2.15.2. Broadcast and Multicast Addresses and Bridging iptables Firewall

	5.2.16. DNS Name Objects
	5.2.17. Object Groups
	5.2.18. Dynamic Object Groups

	5.3. Service Objects
	5.3.1. IP Service
	5.3.1.1. Using IP service objects in policy rules

	5.3.2. ICMP and ICMP6 Service Objects
	5.3.2.1. Using ICMP and ICMP6 Service Objects in Rules

	5.3.3. TCP Service
	5.3.3.1. Using TCP Service in rules
	5.3.3.1.1. Single destination TCP port
	5.3.3.1.2. Source port range
	5.3.3.1.3. Established

	5.3.4. UDP Service
	5.3.4.1. Using UDP Service in Rules
	5.3.4.1.1. Single Destination UDP port
	5.3.4.1.2. Source Port Range

	5.3.5. User Service
	5.3.6. Custom Service
	5.3.6.1. Using Custom Service Object in Rules

	5.4. Time Interval Objects
	5.5. Object Keywords
	5.6. Creating and Using a User-Defined Library of Objects
	5.7. Finding and Replacing Objects

	Chapter 6. Network Discovery: A Quick Way to Create Objects
	6.1. Reading the /etc/hosts file
	6.2. Network Discovery
	6.3. Importing Existing Firewall Configurations into Firewall Builder
	6.3.1. Importing Existing Firewall Configurations
	6.3.2. iptables Import Example
	6.3.2.1. Common iptables Post-Import Actions

	6.3.3. Information Regarding PF Import

	Chapter 7. Firewall Policies
	7.1. Policies and Rules
	7.2. Firewall Access Policy Rule Sets
	7.2.1. Source and Destination
	7.2.2. Service
	7.2.3. Interface
	7.2.4. Direction
	7.2.5. Action
	7.2.6. Time
	7.2.7. Options and Logging
	7.2.8. Working with Multiple Policy Rule Sets

	7.3. Network Address Translation Rules
	7.3.1. Basic NAT Rules
	7.3.2. Source Address Translation
	7.3.2.1. Examples of Source Address Translation Rules
	7.3.2.1.1. Basic Source Address Translation Rule
	7.3.2.1.2. Source Address Translation Using Interface with Dynamic Address
	7.3.2.1.3. Port Translation
	7.3.2.1.4. Load Balancing NAT Rules

	7.3.3. Destination Address Translation
	7.3.3.1. Examples of Destination Address Translation Rules in Firewall Builder
	7.3.3.1.1. Configuring NAT for the Server using an IP address Belonging to the Firewall
	7.3.3.1.2. Configuring NAT for the Server Using a Dedicated Public IP Address
	7.3.3.1.3. NAT Rules Using an Address of Dynamic External Interface
	7.3.3.1.4. Port Translation

	7.4. Routing Ruleset
	7.4.1. Handling of the Default Route
	7.4.2. ECMP routes

	7.5. Editing Firewall Rule Sets
	7.5.1. Adding and Removing Rules
	7.5.2. Adding, Removing, and Modifying Objects in Policies and NAT Rules
	7.5.3. Changing the Rule Action
	7.5.4. Changing Rule Direction
	7.5.5. Setting Rule Options and Logging
	7.5.6. Configuring Multiple Operations per Rule
	7.5.6.1. Configuring an iptables rule to Accept and Classify
	7.5.6.2. Configuring a PF rule to Tag packets

	7.5.7. Using Rule Groups
	7.5.7.1. Creating Rule Groups
	7.5.7.2. Modifying Rule Groups

	7.5.8. Support for Rule Elements and Features on Various Firewalls

	7.6. Compiling and Installing Your Policy
	7.7. Using Built-in Revision Control in Firewall Builder

	Chapter 8. Cluster configuration
	8.1. Linux cluster configuration with Firewall Builder
	8.2. OpenBSD cluster configuration with Firewall Builder
	8.3. PIX cluster configuration with Firewall Builder
	8.4. Handling of the cluster rule set and member firewalls rule sets

	Chapter 9. Configuration of interfaces
	9.1. General principles
	9.2. IP Address Management
	9.2.1. IP Address Management on Linux
	9.2.2. IP Address Management on BSD

	9.3. Interface Names
	9.4. Advanced Interface Settings
	9.4.1. Setting Interface MTU

	9.5. VLAN Interfaces
	9.5.1. VLAN Interface Management on Linux
	9.5.2. VLAN Interface Management on BSD

	9.6. Bridge ports
	9.6.1. Enabling Bridge Interface Management
	9.6.2. Bridge Interface Management on Linux
	9.6.2.1. Bridge with VLAN Interfaces as Bridge Ports

	9.6.3. Bridge Interface Management on BSD

	9.7. Bonding Interfaces

	Chapter 10. Compiling and Installing a Policy
	10.1. Different ways to compile
	10.2. Compiling single rule in the GUI
	10.3. Compiling firewall policies
	10.4. Compiling cluster configuration with Firewall Builder
	10.4.1. Compile a Cluster, Install a Firewall
	10.4.2. Mixed Object Files
	10.4.3. Compile a single firewall within a cluster

	10.5. Installing a Policy onto a Firewall
	10.5.1. Installation Overview
	10.5.2. How does installer decide what address to use to connect to the firewall
	10.5.3. Configuring Installer on Windows
	10.5.4. Using putty sessions on Windows
	10.5.5. Configuring installer to use regular user account to manage the firewall:
	10.5.6. Configuring installer if you use root account to manage the firewall:
	10.5.7. Configuring installer if you regularly switch between Unix and Windows workstations using the same .fwb file and want to m anage the firewall from both
	10.5.8. Always permit SSH access from the management workstation to the firewall
	10.5.9. How to configure the installer to use an alternate ssh port number
	10.5.10. How to configure the installer to use ssh private keys from a special file
	10.5.11. Troubleshooting ssh access to the firewall
	10.5.12. Running built-in installer to copy generated firewall policy to the firewall machine and activate it there
	10.5.13. Running built-in installer to copy generated firewall policy to Cisco router or ASA (PIX)
	10.5.14. Batch install

	10.6. Installing generated configuration onto Cisco routers
	10.6.1. Installing configuration with scp

	10.7. Installing generated configuration onto Cisco ASA (PIX) firewalls

	Chapter 11. Manage your firewall remotely
	11.1. Dedicated Firewall machine
	11.2. Using Diskless Firewall Configuration
	11.3. The Management Workstation

	Chapter 12. Integration with OS Running on the Firewall Machine
	12.1. Generic Linux OS
	12.2. OpenWRT
	12.3. DD-WRT
	12.3.1. DD-WRT (nvram)
	12.3.2. DD-WRT (jffs)

	12.4. Sveasoft
	12.5. IPCOP
	12.6. OpenBSD and FreeBSD
	12.6.1. PF
	12.6.1.1. FreeBSD
	12.6.1.2. OpenBSD

	12.6.2. ipfilter
	12.6.3. ipfw

	12.7. How to make your firewall load your firewall policy on reboot
	12.7.1. Making the Firewall Load the Firewall Policy After Reboot: iptables
	12.7.1.1. Restarting the Firewall Script when an Interface Address Changes

	12.7.2. Making the Firewall Load the Firewall Policy After Reboot: pf
	12.7.3. Making the Firewall Load the Firewall Policy After Reboot: ipfw
	12.7.4. Making the Firewall Load the Firewall Policy After Reboot: ipfilter

	Chapter 13. Configlets
	13.1. Configlet Example

	Chapter 14. Firewall Builder Cookbook
	14.1. Changing IP addresses in Firewall Configuration Created from a Template
	14.2. Examples of Access Policy Rules
	14.2.1. Firewall Object used in Eexamples
	14.2.2. Permit Internal LAN to Connect to the Internet
	14.2.3. Allowing Specific Protocols Through, while Blocking Everything Else
	14.2.4. Letting Certain Protocols through from a Specific Source.
	14.2.5. Interchangeable and non-interchangeable objects
	14.2.6. Anti-spoofing rules
	14.2.7. Anti-Spoofing Rules for a Firewall with a Dynamic Address
	14.2.8. Using Groups
	14.2.9. Using an Address Range Instead of a Group
	14.2.10. Controlling Access to the Firewall
	14.2.11. Controlling access to different ports on the server
	14.2.12. Firewall talking to itself
	14.2.13. Blocking unwanted types of packets
	14.2.14. Using Action 'Reject': blocking Ident protocol
	14.2.15. Using Negation in Policy Rules
	14.2.16. Tagging Packets
	14.2.17. Adding IPv6 Rules to a Policy
	14.2.18. Using Mixed IPv4+IPv6 Rule Sets to Simplify Adoption of IPv6
	14.2.19. Running Multiple Services on the Same Machine on Different Virtual Addresses and Different Ports
	14.2.20. Using a Firewall as the DHCP and DNS Server for the Local Net
	14.2.21. Controlling Outgoing Connections from the Firewall
	14.2.22. Branching rules
	14.2.23. Using branch rule set with external script that adds rules "on the fly" to prevent ssh scanning attacks
	14.2.24. A Different Method for Preventing SSH Scanning Attacks: Using a Custom Service Object with the iptables Module "recent"
	14.2.25. Using an Address Table Object to Block Access from Large Lists of IP Addresses
	14.2.25.1. Generating Configuration for a PF Firewall Using the Same Firewall Builder Objects

	14.3. Examples of NAT Rules
	14.3.1. "1-1" NAT
	14.3.2. "No NAT" Rules
	14.3.3. Redirection rules
	14.3.4. Destination NAT Onto the Same Network
	14.3.5. "Double" NAT (Source and Destination Translation)

	14.4. Examples of cluster configurations
	14.4.1. Web server cluster running Linux or OpenBSD
	14.4.1.1. Setting Up the Heartbeat
	14.4.1.2. Creating Firewall and Cluster Objects
	14.4.1.3. Building rules for the cluster
	14.4.1.4. Installing cluster configuration using built-in policy installer
	14.4.1.5. Converting configuration to OpenBSD and PF

	14.4.2. Linux Cluster Using VRRPd
	14.4.2.1. Setting up VRRPd daemon
	14.4.2.2. Firewall and Cluster Objects for the HA Firewall Configuration with VRRPd
	14.4.2.3. Policy and NAT Rules for the Cluster
	14.4.2.4. Managing the IP Addresses of the Interfaces in the Cluster Set-Up

	14.4.3. Linux Cluster Using a Heartbeat
	14.4.3.1. Setting Up the Heartbeat
	14.4.3.2. Firewall and Cluster Objects for the HA Firewall Configuration with Heartbeat
	14.4.3.3. Policy Rules for the Cluster
	14.4.3.4. Using unicast configuration for heartbeat and conntrack
	14.4.3.5. NAT Rules for the Cluster
	14.4.3.6. Managing IP Addresses of the Interfaces in a Heartbeat Cluster Setup

	14.4.4. Linux cluster with OpenVPN tunnel interfaces
	14.4.4.1. Creating Persistent Tunnels in OpenVPN
	14.4.4.2. Failover scripts for OpenVPN

	14.4.5. Linux Cluster Using Heartbeat and VLAN Interfaces
	14.4.5.1. Configuring Member Firewall Objects
	14.4.5.2. Building a Cluster Object
	14.4.5.3. Managing VLAN Interfaces and Their IP Addresses
	14.4.5.4. Heartbeat Configuration

	14.4.6. Linux cluster using heartbeat running over dedicated interface
	14.4.7. State synchronization with conntrackd in Linux cluster
	14.4.8. OpenBSD cluster
	14.4.9. PIX cluster

	14.5. Examples of Traffic Shaping
	14.5.1. Basic Rate Limiting

	14.6. Useful Tricks
	14.6.1. Using clusters to manage firewall policies on multiple servers
	14.6.2. Creating Local Firewall Rules for a Cluster Member
	14.6.3. Another Way to Generate a Firewall Policy for Many Hosts
	14.6.4. Using Empty Groups
	14.6.5. How to use Firewall Builder to configure the firewall using PPPoE

	Chapter 15. Troubleshooting
	15.1. Build Issues
	15.1.1. autogen.sh Complains "libfwbuilder not installed"
	15.1.2. "Failed dependencies: ..." when installing RPM

	15.2. Program Startup Issues
	15.2.1. "fwbuilder: cannot connect to X server localhost:0.0"
	15.2.2. "fwbuilder: error while loading shared libraries: libfwbuilder.so.0: cannot load shared object file: no such file or directory."
	15.2.3. "fwbuilder: error while loading shared libraries: /usr/local/lib/libfwbuilder.so.8: cannot restore segment prot after re loc: Permission denied"

	15.3. Firewall Compiler and Other Runtime Issues
	15.3.1. Firewall Builder Crashes
	15.3.2. Older Data File Cannot Be Loaded in Firewall Builder
	15.3.3. "I/O Error" While Compiling policy. No Other Error.
	15.3.4. ios_base::failbit set on Windows
	15.3.5. "Cannot create virtual address NN.NN.NN.NN"

	15.4. Troubleshooting installing policy on the firewall
	15.4.1. Plink.exe fails while trying to activate the firewall policy with an error 'Looking up host "" Connecting to 0.0.0.0 port 22'

	15.5. Running the Firewall Script
	15.5.1. Determining which rule caused an error
	15.5.2. "ip: command not found"
	15.5.3. I get the following error when I run generated script for iptables firewall: "iptables v1.2.8: can't initialize iptables table 'drop': Table does not exits (do you need to insmod?) Perhaps iptables or your kernel needs to be upgraded."
	15.5.4. "Interface eth0 does not exist"
	15.5.5. "Interface eth0:1 does not exist"
	15.5.6. Script fails to load module nf_conntrack

	15.6. RCS Troubleshooting
	15.6.1. Error adding file to RCS
	15.6.2. "Error checking file out: co: RCS file c:/fwbuilder/RCS/file.fwb is in use"
	15.6.3. "Error checking file out:"

	15.7. Issues after new policy activation
	15.7.1. Cannot access only some web sites
	15.7.2. Firewall becomes very slow with new policy
	15.7.3. X won't start on a server protected by the firewall
	15.7.4. Cannot access Internet from behind firewall
	15.7.5. Installing updated firewall policy seems to make no difference

	15.8. Routing Rules Issues
	15.8.1. Compile fails with dynamic or point-to-point interfaces

	Chapter 16. Appendix
	16.1. iptables modules
	16.1.1. Installing the iptables ipset Module Using xtables-addons
	16.1.2. Installing the iptables ipset module

